Citation: Ping-Yuan Huang, Zhan-Sheng Guo, Jie-Min Feng. General Model of Temperature-dependent Modulus and Yield Strength of Thermoplastic Polymers[J]. Chinese Journal of Polymer Science, ;2020, 38(4): 382-393. doi: 10.1007/s10118-020-2360-7 shu

General Model of Temperature-dependent Modulus and Yield Strength of Thermoplastic Polymers

  • Corresponding author: Jie-Min Feng, fengjiemin@shu.edu.cn
  • Received Date: 14 July 2019
    Revised Date: 7 September 2019
    Available Online: 6 December 2019

  • A general model was developed to predict the temperature-dependent modulus and yield strength of different thermoplastic polymers. This model, which depends on only two parameters with clear and specific physical meanings, can describe the temperature-dependent modulus and yield strength of thermoplastic polymers over the full glass transition region. The temperature-dependent modulus and yield strength of three thermoplastic polymers were measured by uniaxial tension tests over a temperature range of 243−383 K. The predictions showed excellent agreement with the experimental data. Sensitivity analysis of model input parameters showed negligible effect on the present general model. The universality of the present general model was further validated, showing excellent agreement with published experimental data on other thermoplastic polymers and their composites.
  • 加载中
    1. [1]

      Dubary, N.; Taconet, G.; Bouvet, C.; Vieille, B. Influence of temperature on the impact behavior and damage tolerance of hybrid woven-ply thermoplastic laminates for aeronautical applications. Compos. Struct. 2017, 168, 663−674.  doi: 10.1016/j.compstruct.2017.02.040

    2. [2]

      Malpot, A.; Touchard, F.; Bergamo, S. Influence of moisture on the fatigue behaviour of a woven thermoplastic composite used for automotive application. Mater. Des. 2016, 98, 12−19.

    3. [3]

      Kalnaus, S.; Wang, Y.; Turner, J. A. Mechanical behavior and failure mechanisms of Li-ion battery separators. J. Power Sources 2017, 348, 255−263.  doi: 10.1016/j.jpowsour.2017.03.003

    4. [4]

      Ching, Y. C.; Chuah, C. H.; Ching, K. Y.; Abdullah, L. C.; Rahman, A. In Recent developments in polymer macro, micro and nano blends. Vol. 5, ed. By Visakh, P. M.; Markovic, G.; Pasquini, D. Woodhead Publishing, Oxford, 2017, p. 111−129.

    5. [5]

      Sperling, L. H. In Introduction to physical polymer science, 4th edn. Vol. 1, ed. By Sperling, L. H. John. Wiley. &. Sons, Inc, 2005, p. 1−28.

    6. [6]

      Gu, P.; Asaro, R. J. Structural buckling of polymer matrix composites due to reduced stiffness from fire damage. Compos. Struct. 2005, 69, 65−75.  doi: 10.1016/j.compstruct.2004.05.016

    7. [7]

      Ha, S. K.; Springer, G. S. Nonlinear mechanical properties of a thermoset matrix composite at elevated temperatures. J. Compos. Mater. 1989, 23, 1130−1158.  doi: 10.1177/002199838902301103

    8. [8]

      Dutta, P. K.; Hui, D. Creep rupture of a GFRP composite at elevated temperatures. Compu. Struct. 2000, 76, 153−161.  doi: 10.1016/S0045-7949(99)00176-5

    9. [9]

      Wang, S.; Zhou, Z.; Zhang, J.; Fang, G.; Wang, Y. Effect of temperature on bending behavior of woven fabric-reinforced PPS-based composites. J. Mater. Sci. 2017, 52, 13966−13976.  doi: 10.1007/s10853-017-1480-0

    10. [10]

      Murayama, T.; Bell, J. P. Relation between the network structure and dynamic mechanical properties of a typical amine-cured epoxy polymer. J. Polym. Sci., Part B: Polym. Phys. 1970, 8, 437−445.  doi: 10.1002/pol.1970.160080309

    11. [11]

      Mahieux, C. A.; Reifsnider, K. L. Property modeling across transition temperatures in polymers: a robust stiffness-temperature model. Polymer 2001, 42, 3281−3291.  doi: 10.1016/S0032-3861(00)00614-5

    12. [12]

      Mahieux, C. A.; Reifsnider, K. L. Property modeling across transition temperatures in polymers: application to thermoplastic systems. J. Mater. Sci. 2002, 37, 911−920.  doi: 10.1023/A:1014383427444

    13. [13]

      Gibson, A. G.; Browne, T. N. A.; Feih, S.; Mouritz, A. P. Modeling composite high temperature behavior and fire response under load. J. Compos. Mater. 2012, 46, 2005−2022.  doi: 10.1177/0021998311429383

    14. [14]

      Gibson, A. G.; Wu, Y. S.; Evans, J. T.; Mouritz, A. P. Laminate theory analysis of composites under load in fire. J. Compos. Mater. 2006, 40, 639−658.  doi: 10.1177/0021998305055543

    15. [15]

      Bai, Y.; Keller, T.; Vallee, T. Modeling of stiffness of FRP composites under elevated and high temperatures. Compos. Sci. Technol. 2008, 68, 3099−3106.  doi: 10.1016/j.compscitech.2008.07.005

    16. [16]

      Guo, Z. S.; Feng, J. M.; Wang, H.; Hu, H. J.; Zhang, J. Q. A new temperature-dependent modulus model of glass/epoxy composite at elevated temperatures. J. Compos. Mater. 2013, 47, 3303−3310.  doi: 10.1177/0021998312464080

    17. [17]

      Feng, J. M.; Guo, Z. S. Temperature-frequency-dependent mechanical properties model of epoxy resin and its composites. Compos. Part B-Eng. 2016, 85, 161−169.  doi: 10.1016/j.compositesb.2015.09.040

    18. [18]

      Feng, J. M.; Guo, Z. S. Effects of temperature and frequency on dynamic mechanical properties of glass/epoxy composites. J. Mater. Sci. 2016, 51, 2747−2758.  doi: 10.1007/s10853-015-9589-5

    19. [19]

      Eyring, H. Viscosity, plasticity and diffusion as examples of absolute reaction rates. J. Chem. Phys. 1936, 4, 283−291.  doi: 10.1063/1.1749836

    20. [20]

      Halsey, G.; White, H. J.; Eyring, H. Mechanical properties of textiles I. Text. Res. 1945, 15, 295−311.  doi: 10.1177/004051754501500901

    21. [21]

      Ree, T.; Eyring, H. Theory of non-Newtonian flow. I. Solid plastic system. J. Appl. Phys. 1955, 26, 793−800.  doi: 10.1063/1.1722098

    22. [22]

      Govaert, L. E.; Vries, P. J.; Fennis, P. J.; Nijenhuis, W. F.; Keustermans, J. P. Influence of strain rate, temperature and humidity on the tensile yield behaviour of aliphatic polyketone. Polymer 2000, 41, 1959−1962.  doi: 10.1016/S0032-3861(99)00468-1

    23. [23]

      Chaleat, C. M.; Michel-Amadry, G.; Halley, P. J.; Truss, R. W. Properties of a plasticised starch blend—Part 2: influence of strain rate, temperature and moisture on the tensile yield behaviour. Carbohydr. Polym. 2008, 74, 366−371.  doi: 10.1016/j.carbpol.2008.03.002

    24. [24]

      Lim, S. H.; Yu, Z. Z.; Mai, Y. W. Effects of loading rate and temperature on tensile yielding and deformation mechanisms of nylon 6-based nanocomposites. Compos. Sci. Technol. 2010, 70, 1994−2002.  doi: 10.1016/j.compscitech.2010.07.023

    25. [25]

      Kambour, R. P. A review of crazing and fracture in thermoplastics. J. Polym. Sci. Macromol. Rev. 1973, 7, 1−154.

    26. [26]

      Le Gac, P. Y.; Arhant, M.; Gall, M. L.; Davies, P. Yield stress changes induced by water in polyamide 6: characterization and modeling. Polym. Degrad. Stab. 2017, 137, 272−280.  doi: 10.1016/j.polymdegradstab.2017.02.003

    27. [27]

      Bai, Y.; Keller, T. Time dependence of material properties of FRP composites in fire. J. Compos. Mater. 2009, 43, 2469−2484.  doi: 10.1177/0021998309344641

    28. [28]

      Bai, Y.; Keller, T. Pultruded GFRP tubes with liquid-cooling system under combined temperature and compressive loading. Compos. Struct. 2009, 90, 115−121.  doi: 10.1016/j.compstruct.2009.02.009

    29. [29]

      Bai, Y.; Keller, T. Modeling of mechanical response of FRP composites in fire. Compos. Part A-Appl. Sci. Manuf. 2009, 40, 731−738.  doi: 10.1016/j.compositesa.2009.03.003

    30. [30]

      Bai, Y.; Keller, T.; Correia, J. R.; Branco, F. A.; Ferreira, J. G. Fire protection systems for building floors made of pultruded GFRP profiles—Part 2: modeling of thermomechanical responses. Compos. Part B-Eng. 2010, 41, 630−636.  doi: 10.1016/j.compositesb.2010.09.019

    31. [31]

      Correia, J. R.; Gomes, M. M.; Pires, J. M.; Branco, F. A. Mechanical behaviour of pultruded glass fibre reinforced polymer composites at elevated temperature: experiments and model assessment. Compos. Struct. 2013, 98, 303−313.  doi: 10.1016/j.compstruct.2012.10.051

    32. [32]

      Feng, P.; Wang, J.; Tian, Y.; Loughery, D.; Wang, Y. Mechanical behavior and design of FRP structural members at high and low service temperatures. J. Compos. Constr. 2016, 20, 04016021.  doi: 10.1061/(ASCE)CC.1943-5614.0000676

    33. [33]

      Wu, C.; Bai, Y.; Mottram, J. T. Effect of elevated temperatures on the mechanical performance of pultruded FRP joints with a single ordinary or blind bolt. J. Compos. Constr. 2016, 20, 04015045.  doi: 10.1061/(ASCE)CC.1943-5614.0000608

    34. [34]

      Fang, H.; Wong, M. B.; Bai, Y. Heating rate effect on the thermophysical properties of steel in fire. J. Constr. Steel. Res. 2017, 128, 611−617.  doi: 10.1016/j.jcsr.2016.09.016

    35. [35]

      Rosa, I. C.; Morgado, T.; Correia, J. R.; Firmo, J. P.; Silvestre, N. Shear behavior of GFRP composite materials at elevated temperature. J. Compos. Constr. 2018, 22, 04018010.  doi: 10.1061/(ASCE)CC.1943-5614.0000839

    36. [36]

      Zhang, L.; Bai, Y.; Qi, Y. J.; Fang, H.; Wu, B. S. Post-fire mechanical performance of modular GFRP multicellular slabs with prefabricated fire resistant panels. Compos. Part B-Eng. 2018, 143, 55−67.  doi: 10.1016/j.compositesb.2018.01.034

    37. [37]

      Singla, R. K.; Maiti, S. N.; Ghosh, A. K. Mechanical, morphological, and solid-state viscoelastic responses of poly(lactic acid)/ethylene-co-vinyl-acetate super-tough blend reinforced with halloysite nanotubes. J. Mater. Sci. 2016, 51, 10278−10292.  doi: 10.1007/s10853-016-0255-3

    38. [38]

      Banerjee, S. S.; Bhowmick, A. K. An effective strategy to develop nanostructured morphology and enhanced physico-mechanical properties of PP/EPDM thermoplastic elastomers. J. Mater. Sci. 2016, 51, 6722−6734.  doi: 10.1007/s10853-016-9959-7

    39. [39]

      Zhou, R.; Gao, W. Q.; Xia, L. C.; Wu, H.; Guo, S. Y. The study of damping property and mechanism of thermoplastic polyurethane/phenolic resin through a combined experiment and molecular dynamics simulation. J. Mater. Sci. 2018, 53, 9350−9362.  doi: 10.1007/s10853-018-2218-3

    40. [40]

      Richards, F. J. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290−301.  doi: 10.1093/jxb/10.2.290

    41. [41]

      Xu, L.; Selin, V.; Zhuk, A.; Ankner, J. F.; Sukhishvili, S. A. Molecular weight dependence of polymer chain mobility within multilayer films. ACS Macro Lett. 2013, 2, 865−868.  doi: 10.1021/mz400413v

    42. [42]

      Lin, Y. F.; Li, X. Y.; Meng, L. P.; Chen, X. W.; Lv, F.; Zhang, Q. L.; Zhang, R.; Li, L. B. Structural evolution of hard-elastic isotactic polypropylene film during uniaxial tensile deformation: The effect of temperature. Macromolecules 2018, 51, 2690−2705.  doi: 10.1021/acs.macromol.8b00255

    43. [43]

      ISO, 527. Plastics determination of tensile properties—Part 2: test conditions for moulding and extrusion plastics. ISO, Genève, 2012, p. 1−14

    44. [44]

      Ghorbel, E. A viscoplastic constitutive model for polymeric materials. Int. J. Plast. 2008, 24, 2032−2058.  doi: 10.1016/j.ijplas.2008.01.003

    45. [45]

      Jancar, J.; Hoy, R. S.; Jancarova, E.; Zidek, J. Effect of temperature, strain rate and particle size on the yield stresses and post-yield strain softening of PMMA and its composites. Polymer 2015, 63, 196−207.  doi: 10.1016/j.polymer.2015.03.001

    46. [46]

      Cheng, S. W.; Wang, S. Q. Elastic yielding in cold drawn polymer glasses well below the glass transition temperature. Phys. Rev. Lett. 2013, 110, 1−4.

    47. [47]

      Jin, T.; Zhou, Z. W.; Shu, X. F.; Wang, Z. H.; Wu, G. Y.; Zhao, L. M. Investigation on the yield behaviour and macroscopic phenomenological constitutive law of PA66. Polym. Test. 2018, 69, 563−582.  doi: 10.1016/j.polymertesting.2018.06.014

    48. [48]

      Jin, T.; Zhou, Z. W.; Shu, X. F.; Wang, Z. H.; Wu, G. Y.; Zhao, L. M. Experimental investigation on the yield loci of PA66. Polym. Test. 2016, 51, 148−150.  doi: 10.1016/j.polymertesting.2016.03.007

    49. [49]

      Tang, Y. L.; Karlsson, A. M.; Santare, M. H.; Gilbert, M.; Cleghorn, S.; Johnson, W. B. An experimental investigation of humidity and temperature effects on the mechanical properties of perfluorosulfonic acid membrane. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2006, 425, 297−304.  doi: 10.1016/j.msea.2006.03.055

    50. [50]

      Akay, M. Aspects of dynamic mechanical analysis in polymeric composites. Compos. Sci. Technol. 1993, 47, 419−423.  doi: 10.1016/0266-3538(93)90010-E

    51. [51]

      Künniger, T.; Grüneberger, F.; Fischer, B.; Walder, C. Nanofibrillated cellulose in wood coatings: viscoelastic properties of free composite films. J. Mater. Sci. 2017, 52, 10237−10249.  doi: 10.1007/s10853-017-1193-4

    52. [52]

      Mauro, J. C.; Yue, Y. Z.; Ellison, A. J.; Gupta, P. K.; Allan, D. C. Viscosity of glass-forming liquids. Proc. Natl. Acad. Sci. 2009, 106, 19780−19784.  doi: 10.1073/pnas.0911705106

    53. [53]

      Williams, M. L.; Landel, R. F.; Ferry, J. D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 1955, 77, 3701−3707.  doi: 10.1021/ja01619a008

    54. [54]

      Xiao, C.; Jho, J. Y.; Yee, A. F. Correlation between the shear yielding behavior and secondary relaxations of bisphenol a polycarbonate and related copolymers. Macromolecules 1994, 27, 2761−2768.  doi: 10.1021/ma00088a017

    55. [55]

      Ferrillo, R. G.; Achorn, P. J. Comparison of thermal techniques for glass transition assignment. II. Commercial polymers. J. Appl. Polym. Sci. 1997, 64, 191−195.

    56. [56]

      Monemian, S.; Jafari, S. H.; Khonakdar, H. A. Pötschke, P. Dynamic-mechanical analysis of MWNTs-filled PC/ABS blends. Polym. Eng. Sci. 2014, 54, 2696−2706.  doi: 10.1002/pen.23834

    57. [57]

      Ma, L.; Zhang, Y.; Meng, Y.; Anusonti-Inthra, P.; Wang, S. Preparing cellulose nanocrystal/acrylonitrile-butadiene-styrene nanocomposites using the master-batch method. Carbohydr. Polym. 2015, 125, 352−359.  doi: 10.1016/j.carbpol.2015.02.062

    58. [58]

      Zhang, S. U.; Han, J.; Kang, H. W. Temperature-dependent mechanical properties of ABS parts fabricated by fused deposition modeling and vapor smoothing. Int. J. Precis. Eng. Manuf. 2017, 18, 763−769.  doi: 10.1007/s12541-017-0091-7

    59. [59]

      Tjong, S. C.; Jiang, W. Mechanical performance of ternary in situ polycarbonate/poly(acrylonitrile-butadiene-styrene)/liquid crystalline polymer composites. J. Appl. Polym. Sci. 1999, 74, 2274−2282.  doi: 10.1002/(SICI)1097-4628(19991128)74:9<2274::AID-APP17>3.0.CO;2-1

    60. [60]

      Manchanda, B.; Kottiyath, V. K.; Kapur, G. S.; Kant, S.; Choudhary, V. Morphological studies and thermo-mechanical behavior of polypropylene/sepiolite nanocomposites. Polym. Compos. 2017, 38, E285−E294.  doi: 10.1002/pc.23800

    61. [61]

      Chafidz, A.; Rengga, W. D. P.; Khan, R.; Kaavessina, M.; Almutlaq, A. M.; Almasry, W. A.; Ajbar, A. Polypropylene/multiwall carbon nanotubes nanocomposites: nanoindentation, dynamic mechanical, and electrical properties. J. Appl. Polym. Sci. 2017, 134, 45293.  doi: 10.1002/app.45293

    62. [62]

      Li, L. B. In situ synchrotron radiation techniques: Watching deformation-induced structural evolutions of polymers. Chinese J. Polym. Sci. 2018, 36, 1093−1102.  doi: 10.1007/s10118-018-2169-9

    63. [63]

      Zhou, C. B.; Guo, H. L.; Li, J. Q.; Huang, S. Y.; Li, H. F.; Meng, Y. F.; Yu, D. H.; Christiansen, J. D.; Jiang, S. C. Temperature dependence of poly(lactic acid) mechanical properties. RSC Adv. 2016, 6, 113762−113772.  doi: 10.1039/C6RA23610C

    64. [64]

      Zhang, W. Y.; Li, J. Q.; Li, H. F.; Jiang, S. C.; An, L. J. Temperature dependence of deformation behavior of poly(butylene terephthalate). Polymer 2018, 143, 309−315.  doi: 10.1016/j.polymer.2018.04.030

    65. [65]

      Cao, J.; Wen, N.; Zheng, Y. Y. Effect of long chain branching on the rheological behavior, crystallization and mechanical properties of polypropylene random copolymer. Chinese J. Polym. Sci. 2016, 34, 1158−1171.  doi: 10.1007/s10118-016-1830-4

    66. [66]

      Flory, P. J.; Yoon, D. Y. Molecular morphology in semicrystalline polymers. Nature 1978, 272, 226−229.  doi: 10.1038/272226a0

    67. [67]

      Zhu, S. Z.; Lempesis, N.; In't Veld, P. J.; Rutledge, G. C. Molecular simulation of thermoplastic polyurethanes under large tensile deformation. Macromolecules 2018, 51, 1850−1864.  doi: 10.1021/acs.macromol.7b02367

    68. [68]

      Zhu, S. Z.; Lempesis, N.; In't Veld, P. J.; Rutledge, G. C. Molecular simulation of thermoplastic polyurethanes under large compressive deformation. Macromolecules 2018, 51, 9306−9316.  doi: 10.1021/acs.macromol.8b01922

  • 加载中
    1. [1]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    2. [2]

      Leichen WangAnqing MeiNa LiXiaohong RuanXu SunYu CaiJinjun ShaoXiaochen Dong . Aza-BODIPY dye with unexpected bromination and high singlet oxygen quantum yield for photoacoustic imaging-guided synergetic photodynamic/photothermal therapy. Chinese Chemical Letters, 2024, 35(6): 108974-. doi: 10.1016/j.cclet.2023.108974

    3. [3]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    4. [4]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    5. [5]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    6. [6]

      Tian YangYi LiuLina HuaYaoyao ChenWuqian GuoHaojie XuXi ZengChanghao GaoWenjing LiJunhua LuoZhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707

    7. [7]

      Boqiang WangYongzhuo XuJiajia WangMuyang YangGuo-Jun DengWen Shao . Transition-metal free trifluoromethylimination of alkenes enabled by direct activation of N-unprotected ketimines. Chinese Chemical Letters, 2024, 35(9): 109502-. doi: 10.1016/j.cclet.2024.109502

    8. [8]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    9. [9]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    10. [10]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    11. [11]

      Zhuoer Cai Yinan Zhang Xiu-Ni Hua Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426

    12. [12]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    13. [13]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    14. [14]

      Le Ye Wei-Xiong Zhang . Structural phase transition in a new organic-inorganic hybrid post-perovskite: (N,N-dimethylpyrrolidinium)[Mn(N(CN)2)3]. Chinese Journal of Structural Chemistry, 2024, 43(6): 100257-100257. doi: 10.1016/j.cjsc.2024.100257

Metrics
  • PDF Downloads(0)
  • Abstract views(4091)
  • HTML views(141)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return