Citation: Xia-Chao Chen, Pei-Ru Sun, Hong-Liang Liu. Hierarchically Crosslinked Gels Containing Hydrophobic Ionic Liquids towards Reliable Sensing Applications[J]. Chinese Journal of Polymer Science, ;2020, 38(4): 332-341. doi: 10.1007/s10118-020-2357-2 shu

Hierarchically Crosslinked Gels Containing Hydrophobic Ionic Liquids towards Reliable Sensing Applications

  • Corresponding author: Xia-Chao Chen, chenxiachao@buaa.edu.cn Hong-Liang Liu, liuhl@mail.ipc.ac.cn
  • † These authors contributed equally to this work.
  • Received Date: 8 August 2019
    Revised Date: 12 September 2019
    Available Online: 15 November 2019

  • Human skin can function steadily regardless of surrounding circumstances (dry or wet), while it is still a challenge for artificial ionic skins, which tend to release solvents in dry air and leach electrolytes in wetted state. Herein, a series of hierarchically crosslinked ionogels containing hydrophobic ionic liquids (ILs) is fabricated by combining a crystalline fluorinated copolymer with hydrophobic ILs. With a reasonable combination of nonvolatility, transparency, stretchablility, and sensitivity, such ionogels can work as reliable sensors for real-time monitoring human motions and operate steadily in complex environments as human skin does, which can contribute to the development of durable sensing devices with a simple design.
  • 加载中
    1. [1]

      Wang, J.; Lin, M. F.; Park, S.; Lee, P. S. Deformable conductors for human-machine interface. Mater. Today 2018, 21, 508−526.  doi: 10.1016/j.mattod.2017.12.006

    2. [2]

      Qian, Y.; Zhang, X.; Xie, L.; Qi, D.; Chandran, B. K.; Chen, X.; Huang, W. Stretchable organic semiconductor devices. Adv. Mater. 2016, 28, 9243−9265.  doi: 10.1002/adma.201601278

    3. [3]

      Oh, J. Y.; Kim, S.; Baik, H. K.; Jeong, U. Conducting polymer dough for deformable electronics. Adv. Mater. 2016, 28, 4455−4461.  doi: 10.1002/adma.201502947

    4. [4]

      Keplinger, C.; Sun, J. Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. Stretchable, transparent, ionic conductors. Science 2013, 341, 984−987.  doi: 10.1126/science.1240228

    5. [5]

      Larson, C.; Peele, B.; Li, S.; Robinson, S.; Totaro, M.; Beccai, L.; Mazzolai, B.; Shepherd, R. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science 2016, 351, 1071−1074.  doi: 10.1126/science.aac5082

    6. [6]

      Kim, C C.; Lee, H. H.; Oh, K. H.; Sun, J. Y. Highly stretchable, transparent ionic touch panel. Science 2016, 353, 682−687.  doi: 10.1126/science.aaf8810

    7. [7]

      Yang, C. H.; Chen, B.; Zhou, J.; Chen, Y. M.; Suo, Z. Electroluminescence of giant stretchability. Adv. Mater. 2016, 28, 4480−4484.  doi: 10.1002/adma.201504031

    8. [8]

      Chen, L.; Yin, Y. A.; Liu, Y. X.; Lin, L.; Liu, M. J. Design and fabrication of functional hydrogels through interfacial engineering. Chinese J. Polym. Sci. 2017, 35, 1181−1193.  doi: 10.1007/s10118-017-1995-5

    9. [9]

      Shi, F. K.; Zhong, M.; Zhang, L. Q.; Liu, X. Y.; Xie, X. M. Toughening mechanism of nanocomposite physical hydrogels fabricated by a single gel network with dual crosslinking—the roles of the dual crosslinking points. Chinese J. Polym. Sci. 2017, 35, 25−35.

    10. [10]

      Lei, Z.; Wu, P. A Supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nat. Commun. 2018, 9, 1134.  doi: 10.1038/s41467-018-03456-w

    11. [11]

      Lei, Z.; Wang, Q.; Sun, S.; Zhu, W.; Wu, P. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321.  doi: 10.1002/adma.201700321

    12. [12]

      Lee, H. R.; Kim, C. C.; Sun, J. Y. Stretchable ionics—a promising candidate for upcoming wearable devices. Adv. Mater. 2018, 30, 1704403.  doi: 10.1002/adma.201704403

    13. [13]

      Bai, Y.; Chen, B.; Xiang, F.; Zhou, J.; Wang, H.; Suo, Z. Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl. Phys. Lett. 2014, 105, 151903.  doi: 10.1063/1.4898189

    14. [14]

      Zhang, J. Z.; Xiao, C. S.; Wang, J. C.; Zhuang, X. L.; Chen, X. S. Photo cross-linked biodegradable hydrogels for enhanced vancomycin loading and sustained release. Chinese J. Polym. Sci. 2013, 31, 1697−1705.  doi: 10.1007/s10118-013-1358-9

    15. [15]

      Zhao, Z. G.; Xu, Y. C.; Fang, R. C.; Liu, M. J. Bioinspired adaptive gel materials with synergistic heterostructures. Chinese J. Polym. Sci. 2018, 36, 683−696.  doi: 10.1007/s10118-018-2105-z

    16. [16]

      Yuk, H.; Zhang, T.; Parada, G. A.; Liu, X.; Zhao, X. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures. Nat. Commun. 2016, 7, 12028.  doi: 10.1038/ncomms12028

    17. [17]

      Chen, S.; Liu, H.; Liu, S.; Wang, P.; Zeng, S.; Sun, L.; Liu, L. Transparent and waterproof ionic liquid-based fibers for highly durable multifunctional sensors and strain-insensitive stretchable conductors. ACS Appl. Mater. Interfaces 2018, 10, 4305−4314.  doi: 10.1021/acsami.7b17790

    18. [18]

      Kamio, E.; Yasui, T.; Iida, Y.; Gong, J. P.; Matsuyama, H. Inorganic/organic double-network gels containing ionic liquids. Adv. Mater. 2017, 29, 1704118.  doi: 10.1002/adma.201704118

    19. [19]

      Ding, Y.; Zhang, J.; Chang, L.; Zhang, X.; Liu, H.; Jiang, L. Preparation of high-performance ionogels with excellent transparency, good mechanical strength, and high conductivity. Adv. Mater. 2017, 29, 1704253.  doi: 10.1002/adma.201704253

    20. [20]

      Chen, B.; Lu, J. J.; Yang, C. H.; Yang, J. H.; Zhou, J.; Chen, Y. M.; Suo, Z. Highly stretchable and transparent ionogels as nonvolatile conductors for dielectric elastomer transducers. ACS Appl. Mater. Interfaces 2014, 6, 7840−7845.  doi: 10.1021/am501130t

    21. [21]

      Freire, M. G.; Carvalho, P. J.; Gardas, R. L.; Marrucho, I. M.; Santo, L. M. N. B. F.; Coutinho, J. A. P. Mutual solubilities of water and the [CnMIm][Tf2n] hydrophobic ionic liquids. J. Phys. Chem. B 2008, 112, 1604−1610.

    22. [22]

      Yee, P.; Shah, J. K.; Maginn, E. J. State of hydrophobic and hydrophilic ionic liquids in aqueous solutions: are the ions fully dissociated? J. Phys. Chem. B 2013, 117, 12556−12566.  doi: 10.1021/jp405341m

    23. [23]

      Thomas, M. L.; Oda, Y.; Tatara, R.; Kwon, H. M.; Ueno, K.; Dokko, K.; Watanabe, M. Suppression of water absorption by molecular design of ionic liquid electrolyte for Li-Air battery. Adv. Energy Mater. 2017, 7, 1601753.  doi: 10.1002/aenm.201601753

    24. [24]

      Ameduri, B. From vinylidene fluoride (Vdf) to the applications of Vdf-containing polymers and copolymers: recent developments and future trends. Chem. Rev. 2009, 109, 6632−6686.  doi: 10.1021/cr800187m

    25. [25]

      Lin, D. J.; Lin, C. L.; Guo, S. Y. Network nano-porous poly(vinylidene fluoride-co-hexafluoropropene) membranes by nano-gelation assisted phase separation of poly(vinylidene fluoride-co-hexafluoropropene)/poly(methyl methacrylate) blend precursor in toluene. Macromolecules 2012, 45, 8824−8832.  doi: 10.1021/ma301075e

    26. [26]

      Ueki, T.; Watanabe, M. Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 2008, 41, 3739−3749.  doi: 10.1021/ma800171k

    27. [27]

      Fujii, K.; Asai, H.; Ueki, T.; Sakai, T.; Imaizumi, S.; Chung, U. I.; Watanabe, M.; Shibayama, M. High-performance ion gel with tetra-PEG network. Soft Matter 2012, 8, 1756−1759.  doi: 10.1039/C2SM07119C

    28. [28]

      Xing, C.; Zhao, M.; Zhao, L.; You, J.; Cao, X.; Li, Y. Ionic liquid modified poly(vinylidene fluoride): crystalline structures, miscibility, and physical properties. Polym. Chem. 2013, 4, 5726−5734.  doi: 10.1039/c3py00466j

    29. [29]

      Cao, Y.; Morrissey, T. G.; Acome, E.; Allec, S. I.; Wong, B. M.; Keplinger, C.; Wang, C. A Transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 2017, 29, 1605099.  doi: 10.1002/adma.201605099

    30. [30]

      Liang, C. L.; Mai, Z. H.; Xie, Q.; Bao, R. Y.; Yang, W.; Xie, B. H.; Yang, M. B. Induced formation of dominating polar phases of poly(vinylidene fluoride): positive ion-CF2 dipole or negative ion-CH2 dipole interaction. J. Phys. Chem. B 2014, 118, 9104−9111.  doi: 10.1021/jp504938f

    31. [31]

      Sun, J. Y.; Keplinger, C.; Whitesides, G. M.; Suo, Z. Ionic skin. Adv. Mater. 2014, 26, 7608−7614.  doi: 10.1002/adma.201403441

    32. [32]

      Jin, M. L.; Park, S.; Kim, J. S.; Kwon, S. H.; Zhang, S.; Yoo, M. S.; Jang, S.; Koh, H. J.; Cho, S. Y.; Kim, S. Y.; Ahn, C. W.; Cho, K.; Lee, S. G.; Kim, D. H.; Jung, H. T. An ultrastable ionic chemiresistor skin with an intrinsically stretchable polymer electrolyte. Adv. Mater. 2018, 30, 1706851.  doi: 10.1002/adma.201706851

    33. [33]

      Sousa, R. E.; Nunes-Pereira, J.; Ferreira, J. C. C.; Costa, C. M.; Machado, A. V.; Silva, M. M.; Lanceros-Mendez, S. Microstructural variations of poly(vinylidene fluoride-co-hexafluoropropylene) and their influence on the thermal, dielectric and piezoelectric properties. Polym. Test. 2014, 40, 245−255.  doi: 10.1016/j.polymertesting.2014.09.012

    34. [34]

      Ding, Y.; Zhang, J.; Zhang, X.; Zhou, Y.; Wang, S.; Liu, H.; Jiang, L. Ionic-liquid-gel surfaces showing easy-sliding and ultradurable features. Adv. Mater. Interfaces 2015, 2, 1500177.  doi: 10.1002/admi.201500177

    35. [35]

      Kofu, M.; Someya, T.; Tatsumi, S.; Ueno, K.; Ueki, T.; Watanabe, M.; Matsunaga, T.; Shibayama, M.; Sakai, V. G.; Tyagi, M.; Yamamuro, O. Microscopic insights into ion gel dynamics using neutron spectroscopy. Soft Matter 2012, 8, 7888−7897.  doi: 10.1039/c2sm25348h

    36. [36]

      Ahmad, A. L.; Farooqui, U. R.; Hamid, N. A. Effect of graphene oxide (GO) on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) polymer electrolyte membrane. Polymer 2018, 142, 330−336.  doi: 10.1016/j.polymer.2018.03.052

    37. [37]

      Trung, T. Q.; Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoring and personal healthcare. Adv. Mater. 2016, 28, 4338−4372.  doi: 10.1002/adma.201504244

    38. [38]

      Li, L.; Bai, Y.; Li, L.; Wang, S.; Zhang, T. A superhydrophobic smart coating for flexible and wearable sensing electronics. Adv. Mater. 2017, 29, 1702517.  doi: 10.1002/adma.201702517

    39. [39]

      Yang, S.; Lu, N. Gauge factor and stretchability of silicon-on-polymer strain gauges. Sensors 2013, 13, 8577−8594.  doi: 10.3390/s130708577

    40. [40]

      Liu, T.; Liu, M.; Dou, S.; Sun, J.; Cong, Z.; Jiang, C.; Du, C.; Pu, X.; Hu, W.; Wang, Z. L. Triboelectric-nanogenerator-based soft energy-harvesting skin enabled by toughly bonded elastomer/hydrogel hybrids. ACS Nano 2018, 12, 2818−2826.  doi: 10.1021/acsnano.8b00108

  • 加载中
    1. [1]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    2. [2]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    3. [3]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    4. [4]

      Xueling YuLixing FuTong WangZhixin LiuNa NiuLigang Chen . Multivariate chemical analysis: From sensors to sensor arrays. Chinese Chemical Letters, 2024, 35(7): 109167-. doi: 10.1016/j.cclet.2023.109167

    5. [5]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    6. [6]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    7. [7]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    8. [8]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    9. [9]

      Ya SongMingxia ZhouZhu ChenHuali NieJiao-Jing ShaoGuangmin Zhou . Integrated interconnected porous and lamellar structures realized fast ion/electron conductivity in high-performance lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(6): 109200-. doi: 10.1016/j.cclet.2023.109200

    10. [10]

      Liang MingDan LiuQiyue LuoChaochao WeiChen LiuZiling JiangZhongkai WuLin LiLong ZhangShijie ChengChuang Yu . Si-doped Li6PS5I with enhanced conductivity enables superior performance for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109387-. doi: 10.1016/j.cclet.2023.109387

    11. [11]

      Chuan LiYangyang HanYanan ZhaiKe LiXingzhong LiuZhuan ZhangCai JiaYongsheng Che . Phomaketals A and B, pentacyclic meroterpenoids from a eupC overexpressed mutant strain of Phoma sp.. Chinese Chemical Letters, 2024, 35(7): 109019-. doi: 10.1016/j.cclet.2023.109019

    12. [12]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    13. [13]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

Metrics
  • PDF Downloads(0)
  • Abstract views(4150)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return