Citation: Zhen-Ye Li, Wen-Kai Zhong, Lei Ying, Ning Li, Feng Liu, Fei Huang, Yong Cao. Achieving Efficient Thick Film All-polymer Solar Cells Using a Green Solvent Additive[J]. Chinese Journal of Polymer Science, ;2020, 38(4): 323-331. doi: 10.1007/s10118-020-2356-3 shu

Achieving Efficient Thick Film All-polymer Solar Cells Using a Green Solvent Additive

  • Advances in organic photovoltaic technologies have been geared toward industrial high-throughput printing manufacturing, which requires insensitivity of photovoltaic performance regarding to the light-harvesting layer thickness. However, the thickness of light-harvesting layer for all polymer solar cells (all-PSCs) is often limited to about 100 nm due to the dramatically decreased fill factor upon increasing film thickness, which hampers the light harvesting capability to increase the power conversion efficiency, and is unfavorable for fabricating large-area devices. Here we demonstrate that by tuning the bulk heterojunction morphology using a non-halogenated solvent, cyclopentyl methyl ether, in the presence of a green solvent additive of dibenzyl ether, the power conversion efficiency of all-PSCs with photoactive layer thicknesses of over 500 nm reached an impressively high value of 9%. The generic applicability of this green solvent additive to boost the power conversion efficiency of thick-film devices is also validated in various bulk heterojunction active layer systems, thus representing a promising approach for the fabrication of all-PSCs toward industrial production, as well as further commercialization.
  • 加载中
    1. [1]

      Ma, X.; Luo, M.; Gao, W.; Yuan, J.; An, Q.; Zhang, M.; Hu, Z.; Gao, J.; Wang, J.; Zou, Y.; Yang, C.; Zhang, F. Achieving 14.11% efficiency of ternary polymer solar cells by simultaneously optimizing photon harvesting and exciton distribution. J. Mater. Chem. A 2019, 7, 7843−7851.  doi: 10.1039/C9TA01497G

    2. [2]

      Li, M.; Gao, K.; Wan, X.; Zhang, Q.; Kan, B.; Xia, R.; Liu, F.; Yang, X.; Feng, H.; Ni, W.; Wang, Y.; Peng, J.; Zhang, H.; Liang, Z.; Yip, H. L.; Peng, X.; Cao, Y.; Chen, Y. Solution-processed organic tandem solar cells with power conversion efficiencies >12%. Nat. Photonics 2016, 11, 85−90.

    3. [3]

      Zhao, Y.; Zou, W.; Li, H.; Lu, K.; Yan, W.; Wei, Z. X. Large-area, flexible polymer solar cell based on silver nanowires as transparent electrode by roll-to-roll printing. Chinese J. Polym. Sci. 2017, 35, 261−268.  doi: 10.1007/s10118-017-1875-z

    4. [4]

      Bin, H.; Gao, L.; Zhang, Z. G.; Yang, Y.; Zhang, Y.; Zhang, C.; Chen, S.; Xue, L.; Yang, C.; Xiao, M.; Li, Y. 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 2016, 7, 13651.  doi: 10.1038/ncomms13651

    5. [5]

      Li Z.; Zhong W.; Ying L.; Liu F.; Li N.; Huang F.; Cao Y. Morphology optimization via molecular weight tuning of donor polymer enables all-polymer solar cells with simultaneously improved performance and stability. Nano Energy 2019, 64, 103931.  doi: 10.1016/j.nanoen.2019.103931

    6. [6]

      Jin, Y.; Chen, Z.; Xiao, M.; Peng, J.; Fan, B.; Ying, L.; Zhang, G.; Jiang, X. F.; Yin, Q.; Liang, Z.; Huang, F.; Cao, Y. Thick film polymer solar cells based on naphtho[1,2-c:5,6-c]bis[1,2,5]thiadiazole conjugated polymers with efficiency over 11%. Adv. Energy Mater. 2017, 6, 1700944.

    7. [7]

      Yao, H.; Bai, F.; Hu, H.; Arunagiri, L.; Zhang, J.; Chen, Y.; Yu, H.; Chen, S.; Liu, T.; Yuk, J.; Lai, L.; Zou, Y.; Ade, H.; Yan, H. Efficient all-polymer solar cells based on an new polymer acceptor achieving 10.3% power conversion efficiency. ACS Energy Lett. 2019, 4, 417−422.  doi: 10.1021/acsenergylett.8b02114

    8. [8]

      Zhao, W.; Zhang, Y.; Zhang, S.; Li, S.; He, C.; Hou, J. Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell modules. J. Mater. Chem. C 2019, 7, 3206−3211.

    9. [9]

      Yang, J.; Yin, Y.; Chen, F.; Zhang, Y.; Xiao, B.; Zhao, L.; Zhou, E. Comparison of three n-type copolymers based on benzodithiophene and naphthalene diimide/perylene diimide/fused perylene diimides for all-polymer solar cells application. ACS Appl. Mater. Interfaces 2018, 10, 23263−23269.  doi: 10.1021/acsami.8b06306

    10. [10]

      Guo, Y. K.; Li, Y. K.; Han, H.; Yan, H.; Zhao, D. All-polymer solar cells with perylenediimide polymer acceptors. Chinese J. Polym. Sci. 2017, 35, 293−301.  doi: 10.1007/s10118-017-1893-x

    11. [11]

      Chen, H.; Guo, Y.; Chao, P.; Liu, L.; Chen, W.; Zhao, D.; He, F. A chlorinated polymer promoted analogue co-donors for efficient ternary all-polymer solar cells. Sci. China Chem. 2019, 62, 238−244.  doi: 10.1007/s11426-018-9371-0

    12. [12]

      Yang, F.; Li, C.; Feng, G; Jiang, X.; Zhang, A.; Li, W. Bisperylene bisimide based conjugated polymer as electron acceptor for polymer-polymer solar cells. Chinese J. Polym. Sci. 2017, 35, 239−248.  doi: 10.1007/s10118-017-1870-4

    13. [13]

      Liu, J.; Wang, L. X. Polymer electron acceptors containing boron-nitrogen coordination bond (B←N) for all-polymer solar cells. Acta Polymerica Sinica (in Chinese) 2017, 1856−1869.  doi: 10.11777/j.issn1000-3304.2017.17205

    14. [14]

      Zhou, E.; Cong, J.; Wei, Q.; Tajima, K.; Yang, C.; Hashimoto K. All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. Angew. Chem. Int. Ed. 2011, 50, 2799−2803.  doi: 10.1002/anie.201005408

    15. [15]

      Zhou, E.; Cong, J.; Hashimoto K.; Tajima, K. Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells. Adv. Mater. 2013, 25, 6991−6996.  doi: 10.1002/adma.201303170

    16. [16]

      Yang, J.; Chen, F.; Xiao, B.; Sun, S.; Sun, X.; Tajima, K.; Tang, A.; Zhou, E. Modulating the symmetry of benzodithiophene by molecular tailoring for the application in naphthalene diimide-based n-type photovoltaic polymers. Solar RRL 2018, 2, 1700230.  doi: 10.1002/solr.201700230

    17. [17]

      Gao, L.; Zhang, Z. G.; Xue, L.; Min, J.; Zhang, J.; Wei, Z.; Li, Y. All-polymer solar cells based on absorption-complementary polymer donor and acceptor with high power conversion efficiency of 8.27%. Adv. Mater. 2016, 28, 1884.  doi: 10.1002/adma.201504629

    18. [18]

      Zhang, Z.; Yang, Y.; Yao, J.; Xue, L.; Chen, S.; Li, X.; Morrison, W.; Yang, C.; Li, Y. Constructing a strongly absorbing low-bandgap polymer acceptor for high-performance all-polymer solar cells. Angew. Chem. Int. Ed. 2017, 129, 13688−13692.  doi: 10.1002/ange.201707678

    19. [19]

      Liu, S.; Kan, Z.; Thomas, S.; Cruciani, F.; Brédas, J. L.; Beaujuge, P. M. Thieno[3,4-c]pyrrole-4,6-dione-3,4-difluorothiophene polymer acceptors for efficient all-polymer bulk heterojunction solar cells. Angew. Chem. Int. Ed. 2016, 55, 12996−13000.  doi: 10.1002/anie.201604307

    20. [20]

      Dou, C.; Long, X.; Ding, Z.; Xie, Z.; Liu J.; Wang, L. An electron-deficient building block based on the B←N unit: an electron acceptor for all-polymer solar cells. Angew. Chem. Int. Ed. 2016, 55, 1436−1440.  doi: 10.1002/anie.201508482

    21. [21]

      Guo, Y.; Li, Y.; Awartani, O.; Han, H.; Zhao, J.; Ade, H.; He, Y.; Zhao, D. Improved performance of all-polymer solar cells enabled by naphthodiperylenetetraimide-based polymer acceptor. Adv. Mater. 2017, 29, 1700309.  doi: 10.1002/adma.201700309

    22. [22]

      Li, Z.; Fan, B.; He, B.; Ying, L.; Zhong, W.; Liu, F.; Huang, F.; Cao, Y. Side-chain modification of polyethylene glycol on conjugated polymers for ternary blend all-polymer solar cells with efficiency up to 9.27%. Sci. China Chem. 2018, 61, 427−436.  doi: 10.1007/s11426-017-9188-7

    23. [23]

      Li, Z.; Ying, L.; Zhu, P.; Zhong, W.; Li, N.; Liu, F.; Huang, F.; Cao, Y. A generic green solvent concept boosting the power conversion efficiency of all-polymer solar cells to 11%. Energy Environ. Sci. 2019, 12, 157−163.  doi: 10.1039/C8EE02863J

    24. [24]

      Kang, H.; Lee, W.; Oh, J.; Kim, T.; Lee, C.; Kim, B. J. From fullerene-polymer to all-polymer solar cells: the importance of molecular packing, orientation, and morphology control. Acc. Chem. Res. 2016, 49, 2424−2434.  doi: 10.1021/acs.accounts.6b00347

    25. [25]

      Wang, S.; Liu, Y.; Yang, J.; Tao, Y.; Guo, Y.; Cao, X.; Zhang, Z.; Li, Y.; Huang, W. Orthogonal solubility in fully conjugated donor-acceptor block copolymers: compatibilizers for polymer/fullerene bulk-heterojunction solar cells. Chinese J. Polym. Sci. 2017, 35, 207−218.  doi: 10.1007/s10118-017-1889-6

    26. [26]

      Liu, X.; Zou, Y.; Wang, H. Q.; Wang, L.; Fang J.; Yang, C. High-performance all-polymer solar cells with a high fill factor and a broad tolerance to the donor/acceptor ratio. ACS Appl. Mater. Interfaces 2018, 10, 38302−38309.  doi: 10.1021/acsami.8b15028

    27. [27]

      Fan, B.; Zhong, W.; Ying, L.; Zhang, D.; Li, M.; Lin, Y.; Xia, R.; Liu, F.; Yip, H. L.; Li, N.; Ma, Y.; Brabec, C. J.; Huang, F.; Cao, Y. Surpassing the 10% efficiency milestone for 1-cm2 all-polymer solar cells. Nat. Commun. 2019, 10, 4100.  doi: 10.1038/s41467-019-12132-6

    28. [28]

      Meng, L.; Yi, Y. Q. Q.; Wan, X.; Zhang, Y.; Ke, X.; Kan, B.; Wang, Y.; Xia, R.; Yip, H. L.; Li, C.; Chen, Y. A tandem organic solar cell with PCE of 14.52% employing subcells with the same polymer donor and two absorption complementary acceptors. Adv. Mater. 2019, 31, 1804723.  doi: 10.1002/adma.201804723

    29. [29]

      Yin, A.; Zhang, D.; Cheung, S. H.; So, S. K.; Fu, Z.; Ying, L.; Huang, F.; Zhou, H.; Zhang, Y. On the understanding of energetic disorder, charge recombination and voltage losses in all-polymer solar cells. J. Mater. Chem. C 2018, 6, 7855−7863.  doi: 10.1039/C8TC02689K

    30. [30]

      Chen, H. Electron-deficient core fused-ring based non-fullerene acceptor enables over 15% efficiency in single junction organic solar cells. Sci. China Chem. 2019, 62, 403−404.

    31. [31]

      Zhang, K.; Liu, X. Y.; Xu, B. W.; Cui, Y.; Sun, M. L.; Hou J. H. High-performance fullerene-free polymer solar cells with solution-processed conjugated polymers as anode interfacial layer. Chinese J. Polym. Sci. 2017, 35, 219−229.  doi: 10.1007/s10118-017-1888-7

    32. [32]

      Zhao, R. Y.; Dou, C. D.; Liu, J.; Wang, L. X. An alternating polymer of two building blocks based on B←N unit: non-fullerene acceptor for organic photovoltaics. Chinese J. Polym. Sci. 2017, 35, 198−206.  doi: 10.1007/s10118-017-1878-9

    33. [33]

      Yuan, J.; Ma, W. High efficiency all-polymer solar cells realized by the synergistic effect between the polymer side-chain structure and solvent additive. J. Mater. Chem. A 2015, 3, 7077−7085.  doi: 10.1039/C4TA06648K

    34. [34]

      Li, W.; Albrecht, S.; Yang, L.; Roland, S.; Tumbleston, J. R.; McAfee, T.; Yan, L.; Kelly, M. A.; Ade, H.; Neher, D.; You, W. Mobility-controlled performance of thick solar cells based on fluorinated copolymers. J. Am. Chem. Soc. 2014, 136, 15566−15576.  doi: 10.1021/ja5067724

    35. [35]

      Jin, Y.; Chen, Z.; Dong, S.; Zheng, N.; Ying, L.; Jiang, X. F.; Liu, F.; Huang, F.; Cao, Y. A novel naphtho[1,2-c:5,6-c′]bis([1,2,5] thiadiazole)-based narrow-bandgap π-conjugated polymer with power conversion efficiency over 10%. Adv. Mater. 2016, 28, 9811−9818.  doi: 10.1002/adma.201603178

    36. [36]

      Li, W.; Hendriks, K. H.; Roelofs, W. S. C.; Kim, Y.; Wienk M. M.; Janssen, R. A. J. Efficient small bandgap polymer solar cells with high fill factors for 300 nm thick films. Adv. Mater. 2013, 25, 3182−3186.  doi: 10.1002/adma.201300017

    37. [37]

      Yan, H.; Tang, Y.; Sui, X.; Liu, Y.; Gao, B.; Liu, X.; Liu, S. F.; Hou, J.; Ma, W. Increasing quantum efficiency of polymer solar cells with efficient exciton splitting and long carrier lifetime by molecular doping at heterojunctions. ACS Energy Lett. 2019, 4, 1356−1363.  doi: 10.1021/acsenergylett.9b00843

    38. [38]

      Fan, B.; Zhu, P.; Xin, J.; Li, N.; Ying, L.; Zhong, W.; Li, Z.; Ma, W.; Huang, F.; Cao, Y. High-performance thick-film all-polymer solar cells created via ternary blending of a novel wide-bandgap electron-donating copolymer. Adv. Energy Mater. 2018, 8, 1703085.  doi: 10.1002/aenm.201703085

    39. [39]

      Yuan, J.; Xu, Y.; Shi, G.; Ling, X.; Ying, L.; Huang, F.; Lee, T. H.; Woo, H. Y.; Kim, J. Y.; Cao, Y.; Ma, W. Engineering the morphology via processing additives in multiple all-polymer solar cells for improved performance. J. Mater. Chem. A 2018, 6, 10421−10432.  doi: 10.1039/C8TA03343A

    40. [40]

      Zheng, Y.; Goh, T.; Fan, P.; Shi, W.; Yu, J.; Taylor, A. D. Toward efficient thick active PTB7 photovoltaic layers using diphenyl ether as a solvent additive. ACS Appl. Mater. Interfaces 2016, 8, 15724−15731.  doi: 10.1021/acsami.6b03453

    41. [41]

      Xua, X.; Lia, Z.; Wang, J.; Lin, B.; Ma, W.; Xia, Y.; Anderssone, M. R.; Janssen, E.; Wang, R. A. J. High-performance all-polymer solar cells based on fluorinated naphthalene diimide acceptor polymers with fine-tuned crystallinity and enhanced dielectric constants. Nano Energy 2018, 45, 368−379.

    42. [42]

      Zhan, L.; Li, S.; Zhang, S.; Chen, X.; Lau, T. K.; Lu, X.; Shi, M.; Li, C. Z.; Chen, H. Enhanced charge transfer between fullerene and non-fullerene acceptors enables highly efficient ternary organic solar cells. ACS Appl. Mater. Interfaces 2018, 10, 42444−42452.  doi: 10.1021/acsami.8b16131

    43. [43]

      Wang, Y.; Yan, Z.; Guo, H.; Uddin, M. A.; Ling, S.; Zhou, X.; Su, H.; Dai, J.; Woo, H. Y.; Guo, X. Effects of bithiophene imide fusion on the device performance of organic thin-film transistors and all-polymer solar cells. Angew. Chem. Int. Ed. 2017, 56, 15304−15308.  doi: 10.1002/anie.201708421

    44. [44]

      Meng, Y.; Wu, J.; Guo, X.; Su, W.; Zhu, L.; Fang, J.; Zhang, Z. G.; Liu, F.; Zhang, M.; Russell, T. P.; Li, Y. 11.2% Efficiency all-polymer solar cells with high open-circuit voltage. Sci. China Chem. 2019, 62, 845−850.  doi: 10.1007/s11426-019-9466-6

    45. [45]

      Dai, S. X.; Zhang, S. M.; Ling, Q. D.; Zhan, X. W. Rylene diimide and dithienocyano-vinylene copolymers for polymer solar cells. Chinese J. Polym. Sci. 2017, 35, 230−238.  doi: 10.1007/s10118-017-1879-8

    46. [46]

      Wang, M. H.; Xue, Z. Y.; Wang, Z. W.; Ning, W. H.; Zhong, Y.; Liu, Y. N.; Zhang, C. F.; Huettner, S.; Tao, Y. T. Slight structural disorder in bithiophene-based random terpolymers with improved power conversion efficiency for polymer solar cells. Chinese J. Polym. Sci. 2018, 36, 1129−1138.  doi: 10.1007/s10118-018-2128-5

    47. [47]

      Fan, B.; Ying, L.; Zhu, P.; Pan, F.; Liu, F.; Chen, J.; Huang, F.; Cao, Y. All-polymer solar cells based on a conjugated polymer containing siloxane-functionalized side chains with efficiency over 10%. Adv. Mater. 2017, 29, 1703906.  doi: 10.1002/adma.201703906

    48. [48]

      Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. A high-mobility electron-transporting polymer for printed transistors. Nature 2009, 457, 679.  doi: 10.1038/nature07727

    49. [49]

      Wu, Z.; Sun, C.; Dong, S.; Jiang, X. F.; Wu, S.; Wu, H.; Yip, H. L.; Huang, F.; Cao, Y. n-Type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J. Am. Chem. Soc. 2016, 138, 2004−2013.  doi: 10.1021/jacs.5b12664

    50. [50]

      Li, Z.; Xie, R.; Zhong, W.; Fan, B.; Ali, J.; Ying, L.; Liu, F.; Li, N.; Huang, F.; Cao, Y. High-performance green solvent processed ternary blended all-polymer solar cells enabled by complementary absorption and improved morphology. Sol. RRL 2018, 2, 1800196.  doi: 10.1002/solr.201800196

    51. [51]

      Zhang, L.; Ma, W. Morphology optimization in ternary organic solar cells. Chinese J. Polym. Sci. 2017, 35, 184−197.  doi: 10.1007/s10118-017-1898-5

    52. [52]

      Li, Z.; Ying, L.; Xie, R.; Zhu, P.; Li, N.; Zhong, W.; Huang, F.; Cao, Y. Designing ternary blend all-polymer solar cells with an efficiency of over 10% and a fill factor of 78%. Nano Energy 2018, 51, 434−441.  doi: 10.1016/j.nanoen.2018.06.081

    53. [53]

      Feng, K.; Yuan, J.; Bi, Z.; Ma, W.; Xu, X.; Zhang, G.; Peng, Q. Low-energy-loss polymer solar cells with 14.52% efficiency enabled by wide-band-gap copolymers. iScience 2019, 12, 1−12.  doi: 10.1016/j.isci.2018.12.027

    54. [54]

      Zheng, Z.; Wang, R.; Yao, H.; Xie, S.; Zhang, Y.; Hou, J.; Zhou, H.; Tang, Z. Polyamino acid interlayer facilitates electron extraction in narrow band gap fullerene-free organic solar cells with an outstanding short-circuit current. Nano Energy 2018, 50, 169−175.  doi: 10.1016/j.nanoen.2018.05.034

    55. [55]

      Islam, A.; Liu, Z. Y.; Peng, R. X.; Jiang, W. G.; Lei, T.; Li, W.; Zhang, L.; Yang, R. J.; Qian, G.; Ge, Z. Y. Furan-containing conjugated polymers for organic solar cells. Chinese J. Polym. Sci. 2017, 35, 171−183.  doi: 10.1007/s10118-017-1886-9

    56. [56]

      Keshtov, M. L.; Marochkin, D. V.; Fu, Y. Y.; Xie, Z. Y.; Geng, Y. H.; Kochurov V. S.; Khokhlov A. R. Thienopyrazine or dithiadiazatrindene containing low band gap conjugated polymers for polymer solar cells. Chinese J. Polym. Sci. 2014, 32, 844−853.  doi: 10.1007/s10118-014-1458-1

  • 加载中
    1. [1]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    2. [2]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    3. [3]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    4. [4]

      Rui ChengTingting ZhangXin HuangJian Yu . Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display. Chinese Chemical Letters, 2024, 35(5): 108763-. doi: 10.1016/j.cclet.2023.108763

    5. [5]

      Guiyang ZhengXuelian KangHaoran YeWei FanChristian SonneSu Shiung LamRock Keey LiewChanglei XiaYang ShiShengbo Ge . Recent advances in functional utilisation of environmentally friendly and recyclable high-performance green biocomposites: A review. Chinese Chemical Letters, 2024, 35(4): 108817-. doi: 10.1016/j.cclet.2023.108817

    6. [6]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    7. [7]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    8. [8]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    9. [9]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    10. [10]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    11. [11]

      Mei-Chen LiuQing-Song LiuYi-Zhou QuanJia-Ling YuGang WuXiu-Li WangYu-Zhong Wang . Phosphorus-silicon-integrated electrolyte additive boosts cycling performance and safety of high-voltage lithium-ion batteries. Chinese Chemical Letters, 2024, 35(8): 109123-. doi: 10.1016/j.cclet.2023.109123

    12. [12]

      Jindong HaoYufen LvShuyue TianChao MaWenxiu CuiHuilan YueWei WeiDong Yi . Additive-free synthesis of β-keto phosphorodithioates via geminal hydro-phosphorodithiolation of sulfoxonium ylides with P4S10 and alcohols. Chinese Chemical Letters, 2024, 35(9): 109513-. doi: 10.1016/j.cclet.2024.109513

    13. [13]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    14. [14]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    15. [15]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    16. [16]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    17. [17]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    18. [18]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    19. [19]

      Chen Lu Zefeng Yu Jing Cao . Advancement in porphyrin/phthalocyanine compounds-based perovskite solar cells. Chinese Journal of Structural Chemistry, 2024, 43(3): 100240-100240. doi: 10.1016/j.cjsc.2024.100240

    20. [20]

      Chi Li Peng Gao . Is dipole the only thing that matters for inverted perovskite solar cells?. Chinese Journal of Structural Chemistry, 2024, 43(6): 100324-100324. doi: 10.1016/j.cjsc.2024.100324

Metrics
  • PDF Downloads(0)
  • Abstract views(4297)
  • HTML views(177)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return