Citation: Sheng-Qing Yang, Jin-Nan Zhao, Jing-Bo Zhao, Zhi-Yuan Zhang, Jun-Ying Zhang. Cross-linked Polyamides Prepared through Direct Bulk Michael Addition and Polycondensation from 1,6-Hexanediamine and Methyl Acrylate[J]. Chinese Journal of Polymer Science, ;2020, 38(2): 143-150. doi: 10.1007/s10118-019-2332-y shu

Cross-linked Polyamides Prepared through Direct Bulk Michael Addition and Polycondensation from 1,6-Hexanediamine and Methyl Acrylate

  • Cross-linked polyamides (cPAs) were prepared through direct bulk Michael addition and subsequent polycondensation. Several mixed hexanediamine multi-esters (HDAMEs) were generated through the Michael addition of 1,6-hexanediamine (HDA) and methyl acrylate (MA) at 50 °C with different HDA/MA molar ratios. Melt polycondensation of HDAMEs then proceeded at 150 or 170 °C in flasks to obtain viscous fluids, and curing was continued in tetrafluoroethylene molds to obtain cPA films. The Michael addition was monitored on the basis of FTIR and ESI-MS spectra. The cPA films were characterized by DSC, TGA, dynamic mechanical analysis, and tensile test. These directly prepared cPAs exhibited Tg of 1–39 °C, tensile strength of up to 45 MPa, and strain at break from 18% to 40%. The cPAs with high tensile strength and good toughness were successfully synthesized through the direct bulk Michael addition from HDA and MA followed with polycondensation.
  • 加载中
    1. [1]

      Jeong, S.; Kwak, G.; Takagi, A.; Fujiki, M.; Lee, D. H.; Park, L. S.; Yoon, K. B. Luminous, fully aliphatic polyamides: multicolor photoluminescence, their pH and solvent dependency. Eur. Polym. J. 2008, 44, 1149−1156.  doi: 10.1016/j.eurpolymj.2008.01.036

    2. [2]

      Billiet, L.; Hillewaere, X. K. D.; Du Prez, F. E. Highly functionalized, aliphatic polyamides via CuAAC and thiol-yne chemistries. Eur. Polym. J. 2012, 48, 2085−2096.  doi: 10.1016/j.eurpolymj.2012.08.013

    3. [3]

      Desbois, P.; Bruchmann, B.; Scherzer, D.; Wollny, A.; Radtke, A. Process for producing polyamides via anionic polymerization. 2013, U.S. Pat., 20130079465 A1.

    4. [4]

      Minematsu, H.; Masuko, T. Preparation of crosslinked polyamides with high viscosity. 1990, Jpn. Kokai Tokkyo Koho, 02032128 A.

    5. [5]

      Howland, C. P.; Bailey, K. M.; Workman, D. P.; Moeggenborg, K. J. Crosslinked polyamide binders for ceramics, ceramic precursor, and its manufacture. 1999, PCT Int. Appl., WO 9928377 A1.

    6. [6]

      Sathyan, A.; Hayward, R. C.; Emrick, T. Ring-opening polymerization of allyl-functionalized lactams. Macromolecules 2019, 52, 167−175.  doi: 10.1021/acs.macromol.8b02148

    7. [7]

      Liu, Y. L.; Hsieh, C. Y.; Chen, Y. W. Thermally reversible cross-linked polyamides and thermoresponsive gels by means of Diels-Alder reaction. Polymer 2006, 47, 2581−2586.  doi: 10.1016/j.polymer.2006.02.057

    8. [8]

      Trigo-López, M.; Barrio-Manso, J. L.; Serna, F.; García, F. C.; García, J. M. Crosslinked aromatic polyamides: a further step in high-performance materials. Macromol. Chem. Phys. 2013, 214, 2223−2231.

    9. [9]

      Tunc, D.; Le Coz, C.; Alexandre, M.; Desbois, P.; Lecomte, P.; Carlotti, S. Reversible cross-linking of aliphatic polyamides bearing thermo- and photoresponsive cinnamoyl moieties. Macromolecules 2014, 47, 8247−8254.  doi: 10.1021/ma502083p

    10. [10]

      Williams, J. C.; Meador, M. A. B.; McCorkle, L.; Mueller, C.; Wilmoth, N. Synthesis and properties of step-growth polyamide aerogels cross-linked with triacid chlorides. Chem. Mater. 2014, 26, 4163−4171.  doi: 10.1021/cm5012313

    11. [11]

      Tylkowski, B.; Pregowska, M.; Jamowska, E.; Garcia-Valls, R.; Giamberini, M. Preparation of a new lightly cross-linked liquid crystalline polyamide by interfacial polymerization application to the obtainment of microcapsules with photo-triggered release. Eur. Polym. J. 2009, 45, 1420−1432.

    12. [12]

      Wu, T.; Wang, N. X.; Li, J.; Wang, L.; Zhang, W.; Zhang, G. J.; Ji, S. L. Tubular thermal crosslinked-PEBA/ceramic membrane for aromatic/aliphatic pervaporation. J. Membr. Sci. 2015, 486, 1−9.  doi: 10.1016/j.memsci.2015.03.037

    13. [13]

      Gao, C.; Yan, D. Hyperbranched polymers: from synthesis to applications. Prog. Polym. Sci. 2004, 29, 183−275.  doi: 10.1016/j.progpolymsci.2003.12.002

    14. [14]

      Han, W. S.; Lin, B. P.; Yang, H.; Zhang, X. Q. Synthesis of novel poly(ester amine) dendrimers by Michael addition and acrylate esterification. Des. Monomers Polym. 2013, 16, 67−71.  doi: 10.1080/15685551.2012.705491

    15. [15]

      Buckwalter, D. J.; Dennis, J. M.; Long, T. E. Amide-containing segmented copolymers. Prog. Polym. Sci. 2015, 45, 1−22.  doi: 10.1016/j.progpolymsci.2014.11.003

    16. [16]

      Jiang, M.; Chen, W.; Fang, P.; Chen, S. L.; Bai, J. X.; Huang, Y. F.; Han, M. W.; Lu, P.; Dong, J. Solvent-free polymerization of citric acid and hexamethylenediamine for novel carboxylated polyamides. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 3819−3829.  doi: 10.1002/pola.v50.18

    17. [17]

      Jiang, M.; Chen, G. S.; Lu, P.; Dong, J. Preparation of aqueous soluble polyamides from renewable succinic acid and citric acid as a new approach to design bio-inspired polymers. J. Appl. Polym. Sci. 2014, 131, 39807.

    18. [18]

      Yi, C. F.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y. Cross-linked polyamides synthesized through a Michael addition reaction coupled with bulk polycondensation. Ind. Eng. Chem. Res. 2017, 56, 13743−13750.  doi: 10.1021/acs.iecr.7b03416

    19. [19]

      Zhang, C. Q.; Madbouly, S. A.; Kessler, M. R. Biobased polyurethanes prepared from different vegetable oils. ACS Appl. Mater. Interfaces 2015, 7, 1226−1233.  doi: 10.1021/am5071333

  • 加载中
    1. [1]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    2. [2]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    3. [3]

      Yan-Li LiZhi-Ming LiKai-Kai WangXiao-Long He . Beyond 1,4-addition of in-situ generated (aza-)quinone methides and indole imine methides. Chinese Chemical Letters, 2024, 35(7): 109322-. doi: 10.1016/j.cclet.2023.109322

    4. [4]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    5. [5]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    6. [6]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    7. [7]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    8. [8]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    9. [9]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    10. [10]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    11. [11]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    12. [12]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    13. [13]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    14. [14]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    15. [15]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    16. [16]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    17. [17]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    18. [18]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    19. [19]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    20. [20]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

Metrics
  • PDF Downloads(0)
  • Abstract views(1852)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return