Poly(methyl methacrylate)-induced Microstructure and Hydrolysis Behavior Changes of Poly(L-lactic acid)/Carbon Nanotubes Composites
- Corresponding author: Xiao-Yu Li, lixiaoyu0207@scu.edu.cn Yong Wang, yongwang1976@163.com
Citation: Xu Yu, Xin-Zheng Jin, Ting Huang, Nan Zhang, Xiao-Yu Li, Yong Wang. Poly(methyl methacrylate)-induced Microstructure and Hydrolysis Behavior Changes of Poly(L-lactic acid)/Carbon Nanotubes Composites[J]. Chinese Journal of Polymer Science, ;2020, 38(2): 195-204. doi: 10.1007/s10118-019-2323-z
Jia, L.; Zhang, W. C.; Tong, B.; Yang, R. J. Crystallization, mechanical and flame-retardant properties of poly(lactic acid) composites with DOPO and DOPO-POSS. Chinese J. Polym. Sci. 2018, 36, 871−879.
doi: 10.1007/s10118-018-2098-7
Karamanlioglu, M.; Preziosi, R.; Robson, G. D. Abiotic and biotic environmental degradation of the bioplastic polymer poly(lactic acid): a review. Polym. Degrad. Stab. 2017, 137, 122−130.
doi: 10.1016/j.polymdegradstab.2017.01.009
Girdthep, S.; Sankong, W.; Pongmalee, A.; Saelee, T.; Punyodom, W.; Meepowpan, P.; Worajittiphon, P. Enhanced crystallization, thermal properties, and hydrolysis resistance of poly(L-lactic acid) and its stereocomplex by incorporation of graphene nanoplatelets. Polym. Test. 2017, 61, 229−239.
doi: 10.1016/j.polymertesting.2017.05.009
Holcapkova, P.; Stloukal, P.; Kucharczyk, P.; Omastova, M.; Kovalcik, A. Anti-hydrolysis effect of aromatic carbodiimide in poly(lactic acid) wood flour composites. Composites Part A 2017, 103, 283−291.
doi: 10.1016/j.compositesa.2017.10.003
Stloukal, P.; Jandikova, G.; Koutny, M.; Sedlařík, V. Carbodiimide additive to control hydrolytic stability and biodegradability of PLA. Polym. Test. 2016, 54, 19−28.
doi: 10.1016/j.polymertesting.2016.06.007
Jandíková, G.; Stoplova, P.; Di Martino, A.; Stloukal, P.; Kucharczyk, P.; Machovsky, M.; Sedlarik, V. Effect of a hybrid zinc stearate-silver system on the properties of polylactide and its abiotic and the biotic degradation and antimicrobial activity thereof. Chinese J. Polym. Sci. 2018, 36, 925−933.
doi: 10.1007/s10118-018-2120-0
Tsuji, H.; Nakahara, K. Poly(L-lactide). IX. Hydrolysis in acid media. J. Appl. Polym. Sci. 2002, 86, 186−194.
Tsuji, H.; Ikada, Y. Properties and morphology of poly(L-lactide). II. Hydrolysis in alkaline solution. J. Polym. Sci., Part A: Polym. Chem. 1998, 36, 59−66.
doi: 10.1002/(ISSN)1099-0518
Tsuji, H.; Ikarashi, K. In vitro hydrolysis of poly(L-lactide) crystalline residues as extended-chain crystallites. Polym. Degrad. Stab. 2004, 85, 647−656.
doi: 10.1016/j.polymdegradstab.2004.03.004
Xu, L.; Crawford, K.; Gorman, C. B. Effects of temperature and pH on the degradation of poly(lactic acid) brushes. Macromolecules 2011, 44, 4777−4782.
doi: 10.1021/ma2000948
Chen, H. M.; Feng, C. X.; Zhang, W. B.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y. Hydrolytic degradation behavior of poly(L-lactide)/carbon nanotubes nanocomposites. Polym. Degrad. Stab. 2013, 98, 198−208.
doi: 10.1016/j.polymdegradstab.2012.10.009
Chen, H. M.; Wang, Y. P.; Chen, J.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Hydrolytic degradation behavior of poly(L-lactide)/SiO2 composites. Polym. Degrad. Stab. 2013, 98, 2672−2679.
doi: 10.1016/j.polymdegradstab.2013.09.033
Chen, H. M.; Shen, Y.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Zhou, Z. W. Molecular ordering and α′-form formation of poly(L-lactide) during the hydrolytic degradation. Polymer 2013, 54, 6644−6653.
doi: 10.1016/j.polymer.2013.09.059
Iñiguez-Franco, F.; Auras, R.; Burgess, G.; Holmes, D.; Fang, X.; Rubino, M.; Soto-Valdez, H. Concurrent solvent induced crystallization and hydrolytic degradation of PLA by water-ethanol solutions. Polymer 2016, 99, 315−323.
doi: 10.1016/j.polymer.2016.07.018
Wang, Y. P.; Xiao, Y. J.; Duan, J.; Yang, J. H.; Wang, Y.; Zhang, C. L. Accelerated hydrolytic degradation of poly(lactic acid) achieved by adding poly(butylene succinate). Polym. Bull. 2015, 73, 1067−1083.
Oyama, H. T.; Tanishima, D.; Ogawa, R. Biologically safe poly(L-lactic acid) blends with tunable degradation rate: microstructure, degradation mechanism, and mechanical properties. Biomacromolecules 2017, 18, 1281−1292.
doi: 10.1021/acs.biomac.7b00016
Huang, Y.; Chen, F.; Pan, Y.; Chen, C.; Jiang, L.; Dan, Y. Effect of hydrophobic fluoropolymer and crystallinity on the hydrolytic degradation of poly(lactic acid). Eur. Polym. J. 2017, 97, 308−318.
doi: 10.1016/j.eurpolymj.2017.09.044
Ma, P. M.; Xu, P. W.; Zhai, Y. H.; Dong, W. F.; Zhang, Y.; Chen, M. Q. Biobased poly(lactide)/ethylene-co-vinyl acetate thermoplastic vulcanizates: morphology evolution, superior properties, and partial degradability. ACS Sustain. Chem. Eng. 2015, 3, 2211−2219.
doi: 10.1021/acssuschemeng.5b00462
Andersson, S. R.; Hakkarainen, M.; Inkinen, S.; Sodergard, A.; Albertsson, A. C. Customizing the hydrolytic degradation rate of stereocomplex PLA through different PDLA architectures. Biomacromolecules 2012, 13, 1212−1222.
doi: 10.1021/bm300196h
Arias, V.; Hoglund, A.; Odelius, K.; Albertsson, A. C. Tuning the degradation profiles of poly(L-lactide)-based materials through miscibility. Biomacromolecules 2014, 15, 391−402.
doi: 10.1021/bm401667b
Jašo, V.; Glenn, G.; Klamczynski, A.; Petrović, Z. S. Biodegradability study of polylactic acid/thermoplastic polyurethane blends. Polym. Test. 2015, 47, 1−3.
doi: 10.1016/j.polymertesting.2015.07.011
Wang, Y. P.; Wei, X.; Duan, J.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Greatly enhanced hydrolytic degradation ability of poly(L-lactide) achieved by adding poly(ethylene glycol). Chinese J. Polym. Sci. 2017, 35, 386−399.
doi: 10.1007/s10118-017-1904-y
Chen, H.; Chen, J.; Chen, J.; Yang, J.; Huang, T.; Zhang, N.; Wang, Y. Effect of organic montmorillonite on cold crystallization and hydrolytic degradation of poly(L-lactide). Polym. Degrad. Stab. 2012, 97, 2273−2283.
doi: 10.1016/j.polymdegradstab.2012.07.037
Elsawy, M. A.; Kim, K. H.; Park, J. W.; Deep, A. Hydrolytic degradation of polylactic acid (PLA) and its composites. Renew. Sust. Energ. Rev. 2017, 79, 1346−1352.
doi: 10.1016/j.rser.2017.05.143
Reddy, N.; Nama, D.; Yang, Y. Poly(lactic acid)/polypropylene polyblend fibers for better resistance to degradation. Polym. Degrad. Stab. 2018, 93, 233−241.
Yan, S.; Yin, J.; Yang, Y.; Dai, Z.; Ma, J.; Chen, X. Surface-grafted silica linked with L-lactic acid oligomer: a novel nanofiller to improve the performance of biodegradable poly(L-lactide). Polymer 2007, 48, 1688−1694.
doi: 10.1016/j.polymer.2007.01.037
Luo, Y. B.; Wang, X. L.; Wang, Y. Z. Effect of TiO2 nanoparticles on the long-term hydrolytic degradation behavior of PLA. Polym. Degrad. Stab. 2012, 97, 721−728.
doi: 10.1016/j.polymdegradstab.2012.02.011
Duan, J.; Xie, Y. N.; Yang, J. H.; Huang, T.; Zhang, N.; Wang, Y.; Zhang, J. H. Graphene oxide induced hydrolytic degradation behavior changes of poly(L-lactide) in different mediums. Polym. Test. 2016, 56, 220−228.
doi: 10.1016/j.polymertesting.2016.10.015
Shirahase, T.; Komatsu, Y.; Tominaga, Y.; Asai, S.; Sumita, M. Miscibility and hydrolytic degradation in alkaline solution of poly(L-lactide) and poly(methyl methacrylate) blends. Polymer 2006, 47, 4839−4844.
doi: 10.1016/j.polymer.2006.04.012
Hao, X.; Kaschta, J.; Pan, Y.; Liu, X.; Schubert, D. W. Intermolecular cooperativity and entanglement network in a miscible PLA/PMMA blend in the presence of nanosilica. Polymer 2016, 82, 57−65.
doi: 10.1016/j.polymer.2015.11.029
Boudaoud, N.; Benali, S.; Mincheva, R.; Satha, H.; Raquez, J. M.; Dubois, P. Hydrolytic degradation of poly(L-lactic acid)/poly(methyl methacrylate) blends. Polym. Int. 2018, 67, 1393−1400.
doi: 10.1002/pi.2018.67.issue-10
Fischer, E. W.; Sterzel, H. J.; Wegner, G. Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Colloid Polym. Sci. 1973, 251, 980−990.
Liu, L.; Wang, Y.; Xiang, F. M.; Li, Y. L.; Han, L.; Zhou, Z. W. Effects of functionalized multiwalled carbon nanotubes on the morphologies and mechanical properties of PP/EVA blend. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 1481−1491.
doi: 10.1002/(ISSN)1099-0488
Li, Y. L.; Wang, Y.; Liu, L.; Han, L.; Xiang, F. M.; Zhou, Z. W. Crystallization improvement of poly(L-lactide) induced by functionalized multiwalled carbon nanotubes. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 326−339.
doi: 10.1002/polb.v47:3
Pantani, R.; Sorrentino, A. Influence of crystallinity on the biodegradation rate of injection-moulded poly(lactic acid) samples in controlled composting conditions. Polym. Degrad. Stab. 2013, 98, 1089−1096.
doi: 10.1016/j.polymdegradstab.2013.01.005
Kulinski, Z.; Piorkowska, E. Crystallization, structure and properties of plasticized poly(L-lactide). Polymer 2005, 46, 10290−10300.
doi: 10.1016/j.polymer.2005.07.101
Rodriguez, E.; Shahbikian, S.; Marcos, B.; Huneault, M. A. Hydrolytic stability of polylactide and poly(methyl methacrylate) blends. J. Appl. Polym. Sci. 2018, 135, 45991.
doi: 10.1002/app.45991
Hao, X. Q.; Kaschta, J.; Liu, X. H.; Pan, Y.; Schubert, D. W. Entanglement network formed in miscible PLA/PMMA blends and its role in rheological and thermo-mechanical properties of the blends. Polymer 2015, 80, 38−45.
doi: 10.1016/j.polymer.2015.10.037
Zhang, J. M.; Duan, Y. X.; Sato, H.; Tsuji, H.; Noda, I.; Yan, S.; Ozaki, Y. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Macromolecules 2005, 38, 8012−8021.
doi: 10.1021/ma051232r
Pan, P. J.; Liang, Z. C.; Zhu, B.; Dong, T.; Inoue, Y. Roles of physical aging on crystallization kinetics and induction period of poly(L-lactide). Macromolecules 2008, 41, 8011−8019.
doi: 10.1021/ma801436f
Zhang, J. M.; Li, C. W.; Duan, Y. X.; Domb, A. J.; Ozaki, Y. Glass transition and disorder-to-order phase transition behavior of poly(L-lactic acid) revealed by infrared spectroscopy. Vib. Spectr. 2010, 53, 307−310.
doi: 10.1016/j.vibspec.2010.03.015
Berquier, J. M.; Arribart, H. Attenuated total reflection Fourier transform infrared spectroscopy study of poly(methyl methacrylate) adsorption on a silica thin film: polymer/surface interactions. Langmuir 1998, 14, 3716−3719.
doi: 10.1021/la9703961
Steiner, G.; Zimmerer, C.; Salzer, R. Characterization of metal-supported poly(methyl methacrylate) microstructures by FTIR imaging spectroscopy. Langmuir 2006, 22, 4125−4130.
doi: 10.1021/la053221x
Li, M. X.; Kim, S. H.; Choi, S. W.; Goda, K.; Lee, W. I. Effect of reinforcing particles on hydrolytic degradation behavior of poly(lactic acid) composites. Composites Part B 2016, 96, 248−254.
doi: 10.1016/j.compositesb.2016.04.029
Raquez, J. M.; Habibi, Y.; Murariu, M.; Dubois, P. Polylactide (PLA)-based nanocomposites. Prog. Polym. Sci. 2013, 38, 1504−1542.
doi: 10.1016/j.progpolymsci.2013.05.014
Zhang, Z. X.; Wang, W. Y.; Yang, J. H.; Zhang, N.; Huang, T.; Wang, Y. Excellent electroactive shape memory performance of EVA/PCL/CNT blend composites with selectively localized CNTs. J. Phys. Chem. C 2016, 120, 22793−22802.
doi: 10.1021/acs.jpcc.6b06345
Xie, Y. N.; Liu, D. F.; Sun, D. X.; Yang, J. H.; Qi, X. D.; Wang, Y. Crystallization and concentration fluctuation of miscible poly(vinylidene fluoride)/poly(methyl methacrylate) blends containing carbon nanotubes: molecular weight dependence of poly(methyl methacrylate). Eur. Polym. J. 2018, 105, 478−490.
doi: 10.1016/j.eurpolymj.2018.01.022
Xavier, P.; Bose, S. Multiwalled-carbon-nanotube-induced miscibility in near-critical PS/PVME blends: assessment through concentration fluctuations and segmental relaxation. J. Phys. Chem. B 2013, 117, 8633−8646.
doi: 10.1021/jp404610w
Fowkes. F. M. Determination of interfacial tensions, contact angles, and dispersion forces in surfaces by assuming additivity of intermolecular interactions in surfaces. J. Phys. Chem. B 1962, 66, 382−382.
doi: 10.1021/j100808a524
Owens, D. K.; Wendt, R. C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741−1747.
doi: 10.1002/app.1969.070130815
Shi, Y. Y.; Yang, J. H.; Huang, T.; Zhang, N.; Chen, C.; Wang, Y. Selective localization of carbon nanotubes at the interface of poly(L-lactide)/ethylene-co-vinyl acetate resulting in lowered electrical resistivity. Composites Part B 2013, 55, 463−469.
doi: 10.1016/j.compositesb.2013.07.012
Nuriel, S.; Liu, L.; Barber, A. H.; Wagner, H. D. Direct measurement of multiwall nanotube surface tension. Chem. Phys. Lett. 2005, 404, 263−266.
doi: 10.1016/j.cplett.2005.01.072
Kyutoku, H.; Maeda, N.; Sakamoto, H.; Nishimura, H.; Yamada, K. Effect of surface treatment of cellulose fiber (CF) on durability of PLA/CF bio-composites. Carbohydr. Polym. 2019, 203, 95−102.
doi: 10.1016/j.carbpol.2018.09.033
Haojie Song , Laiyu Luo , Siyu Wang , Guo Zhang , Baojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347
Weijian Zhang , Xianyu Deng , Liying Wang , Jian Wang , Xiuting Guo , Lianggui Huang , Xinyi Wang , Jun Wu , Linjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422
Mingxin Song , Lijing Xie , Fangyuan Su , Zonglin Yi , Quangui Guo , Cheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
Yuxin Wang , Zhengxuan Song , Yutao Liu , Yang Chen , Jinping Li , Libo Li , Jia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779
Zhili Li , Qijun Wo , Dongdong Huang , Dezhong Zhou , Lei Guo , Yeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737
Shiyu Pan , Bo Cao , Deling Yuan , Tifeng Jiao , Qingrui Zhang , Shoufeng Tang . Complexes of cupric ion and tartaric acid enhanced calcium peroxide Fenton-like reaction for metronidazole degradation. Chinese Chemical Letters, 2024, 35(7): 109185-. doi: 10.1016/j.cclet.2023.109185
Zhenchun Yang , Bixiao Guo , Zhenyu Hu , Kun Wang , Jiahao Cui , Lina Li , Chun Hu , Yubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251
Hang Chen , Chengzhi Cui , Hebo Ye , Hanxun Zou , Lei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145
Xiaotao Jin , Yanlan Wang , Yingping Huang , Di Huang , Xiang Liu . Percarbonate activation catalyzed by nanoblocks of basic copper molybdate for antibiotics degradation: High performance, degradation pathways and mechanism. Chinese Chemical Letters, 2024, 35(10): 109499-. doi: 10.1016/j.cclet.2024.109499
Yun-Fei Zhang , Chun-Hui Zhang , Jian-Hui Xu , Lei Li , Dan Li , Jin-Hong Fan , Jiale Gao , Xin Quan , Qi Wu , Yue Zou , Yan-Ling Liu . Enhanced degradation of florfenicol by microscale SiC/Fe: Dechlorination via hydrogenolysis. Chinese Chemical Letters, 2024, 35(7): 109385-. doi: 10.1016/j.cclet.2023.109385
Yuqing Zhu , Haohao Chen , Li Wang , Liqun Ye , Houle Zhou , Qintian Peng , Huaiyong Zhu , Yingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884
Menglu Guo , Ying-Qi Song , Junfei Cheng , Guoqiang Dong , Xun Sun , Chunquan Sheng . Hydrophobic tagging-induced degradation of NAMPT in leukemia cells. Chinese Chemical Letters, 2024, 35(9): 109392-. doi: 10.1016/j.cclet.2023.109392
Cunjun Li , Wencong Liu , Xianlei Chen , Liang Li , Shenyu Lan , Mingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652
Qiang Zhang , Weiran Gong , Huinan Che , Bin Liu , Yanhui Ao . S doping induces to promoted spatial separation of charge carriers on carbon nitride for efficiently photocatalytic degradation of atrazine. Chinese Journal of Structural Chemistry, 2023, 42(12): 100205-100205. doi: 10.1016/j.cjsc.2023.100205
Jian Peng , Yue Jiang , Shuangyu Wu , Yanran Cheng , Jingyu Liang , Yixin Wang , Zhuo Li , Sijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903
Dong Cheng , Youyou Feng , Bingxi Feng , Ke Wang , Guoxin Song , Gen Wang , Xiaoli Cheng , Yonghui Deng , Jing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623
Kai Han , Guohui Dong , Ishaaq Saeed , Tingting Dong , Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208
Si Ha , Jiacheng Zhu , Hua Xiang , Guoshun Luo . Hydrophobic tag tethering degrader as a promising paradigm of protein degradation: Past, present and future perspectives. Chinese Chemical Letters, 2024, 35(8): 109192-. doi: 10.1016/j.cclet.2023.109192
Chunxiu Yu , Zelin Wu , Hongle Shi , Lingyun Gu , Kexin Chen , Chuan-Shu He , Yang Liu , Heng Zhang , Peng Zhou , Zhaokun Xiong , Bo Lai . Insights into the electron transfer mechanisms of peroxydisulfate activation by modified metal-free acetylene black for degradation of sulfisoxazole. Chinese Chemical Letters, 2024, 35(8): 109334-. doi: 10.1016/j.cclet.2023.109334