Citation: Wei Zhao, Tian-Pin Wang, Jia-Li Wu, Ru-Ping Pan, Xiang-Yang Liu, Xi-Kui Liu. Monolithic Covalent Organic Framework Aerogels through Framework Crystallization Induced Self-assembly: Heading towards Framework Materials Synthesis over All Length Scales[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1045-1052. doi: 10.1007/s10118-019-2313-1 shu

Monolithic Covalent Organic Framework Aerogels through Framework Crystallization Induced Self-assembly: Heading towards Framework Materials Synthesis over All Length Scales

  • Corresponding author: Xi-Kui Liu, xkliu@scu.edu.cn
  • Received Date: 15 April 2019
    Revised Date: 30 May 2019
    Available Online: 12 September 2019

  • Here, through the synergism between kinetic dynamic imine-exchange control and thermodynamic control, rarely observed compressible, porous, crystalline covalent organic framework (COF) aerogels were synthesized, the mechanism behind which is a framework crystallization induced self-assembly (FCISA) process. The prepared COF aerogel possessed extremely high BET surface over 2000 m2·g−1 and high maximum equilibrium adsorption capacity toward bisphenol-A of 699 mg·g−1 in aqueous solution.
  • 加载中
    1. [1]

      Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166-1170.  doi: 10.1126/science.1120411

    2. [2]

      Oh, H.; Kalidindi, S. B.; Um, Y.; Bureekaew, S.; Schmid, R. A cryogenically flexible covalent organic framework for efficient hydrogen isotope separation by quantum sieving. Angew. Chem. Int. Ed. 2013, 52, 13219-13222.  doi: 10.1002/anie.201307443

    3. [3]

      Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev., 2013, 42, 548-568  doi: 10.1039/C2CS35072F

    4. [4]

      Qian, H. L.; Yang, C. X.; Yan, X. P. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat. Commun. 2016, 7, 12104-12111.  doi: 10.1038/ncomms12104

    5. [5]

      Xu, H.; Chen, X.; Gao, J.; Lin, J. B.; Addicoat, M.; Irle, S.; Jiang, D. L. Catalytic covalent organic frameworks via pore surface engineering. Chem. Commun. 2014, 50, 1292-1294.  doi: 10.1039/C3CC48813F

    6. [6]

      Furukawa, H.; Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 2009, 131, 8875-8883.  doi: 10.1021/ja9015765

    7. [7]

      Deblase, C. R.; Silberstein, K. E.; Truong, T. T.; A, H. A.; Dichtel, W. R. Β. β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 2013, 135, 16821-16824.  doi: 10.1021/ja409421d

    8. [8]

      Peng, Y.; Zhao, M.; Chen, B.; Zhang, Z.; Huang, Y.; Dai, F.; Lai, Z.; Cui, X.; Tan, C.; Zhang, H. Hybridization of MOFs and COFs: A new strategy for construction of MOF@COF core-shell hybrid materials. Adv. Mater. 2018, 30, 1705454  doi: 10.1002/adma.v30.3

    9. [9]

      Gole, B.; Stepanenko, V.; Rager, S.; Grgne, M.; Medina, D. D.; Bein, T.; Wgrthner, F.; Beuerle, F. Microtubular self‐assembly of covalent organic frameworks. Angew. Chem. Int. Ed. 2018, 57, 846 –850  doi: 10.1002/anie.201708526

    10. [10]

      Halder, A.; Kandambeth, S.; Biswal, B. P.; Kaur, G.; Roy, N. C.; Addicoat, M.; Salunke, J. K.; Banerjee, S.; Vanka, K.; Heine, T.; Verma, S.; Banerjee, R. Decoding the morphological diversity in two dimensional crystalline porous polymers by core planarity modulation. Angew. Chem. Int. Ed. 2016, 55, 7806 –7810.  doi: 10.1002/anie.201600087

    11. [11]

      Kandambeth, S.; Venkatesh, V.; Shinde, D. B.; Kumari, S.; Halder, A.; Verma, S.; Banerjee, R. Self-templated chemically stable hollow spherical covalent organic framework. Nat. Comm. 2015, DOI: 10.1038/ncomms7786  doi: 10.1038/ncomms7786

    12. [12]

      Tan, J.; Namuangruk, S.; Kong, W.; Kungwan, N.; Guo, J.; Wang, C. Manipulation of amorphous‐to‐crystalline transformation: Towards the construction of covalent organic framework hybrid microspheres with NIR photothermal conversion ability. Angew. Chem. Int. Ed. 2016, 55, 13979 –13984  doi: 10.1002/anie.v55.45

    13. [13]

      Sun, B.; Liu, J.; Cao, A.; Song, W.; Wang, D. Interfacial synthesis of ordered and stable covalent organic frameworks on amino-functionalized carbon nanotubes with enhanced electrochemical performance. Chem. Commun., 2017, 53, 6303--6306  doi: 10.1039/C7CC01902E

    14. [14]

      Ma, T.; Kapustin, E. A.; Yin, S.; Liang, L.; Zhou. Z.; Niu, J.; Li, L.; Wang, Y.; Su, J.; Li, J.; Wang, X.; Wang, W.; Wang, W.; Sun, J.; Yaghi, O. M. Single-crystal X-ray diffraction structures of covalent organic frameworks. Science, 2018, 361, 48–52  doi: 10.1126/science.aat7679

    15. [15]

      Evans, A. M.; Parent, L. R.; Flanders, N. C.; Bisbey, R. P.; Vitaku, E.; Kirschner, M. S; Schaller, R. D.; Chen, L. X.; Gianneschi, N. C.; Dichtel, W. R. Seeded growth of single-crystal two-dimensional covalent organic frameworks. Science, 2018, 361, 52–57  doi: 10.1126/science.aar7883

    16. [16]

      Dogru, M.; Handloser, M.; Auras, F.; Kunz, T.; Medina, D. A. A photoconductive thienothiophene‐based covalent organic framework showing charge transfer towards included fullerene. Angew. Chem. Int. Ed. 2013, 125, 2992-2996.  doi: 10.1002/ange.201208514

    17. [17]

      Feng, X.; Chen, L.; Honsho, Y.; Saengsawang, O.; Liu, L. L.; Wang, L.; Saeki, A.; Irle, S.; Seki, S.; Dong, Y. P.; Jiang, D. L. An ambipolar conducting covalent organic framework with self‐sorted and periodic electron donor‐acceptor ordering. Adv. Mater. 2012, 24, 3026-3031.  doi: 10.1002/adma.v24.22

    18. [18]

      Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816-19822.  doi: 10.1021/ja206846p

    19. [19]

      Calik, M.; Auras, F.; Salonen, L. M.; Bader, K.; Grill, I.; Handloser, M.; Medina, D. D.; Dogru, M.; Löbermann, F.; Trauner, D.; Hartschuh, A.; Bein, T. Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction. J. Am. Chem. Soc. 2014, 136, 17802-17807.  doi: 10.1021/ja509551m

    20. [20]

      Warren, N. J.; Armes, S. P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 2014, 136, 10174−10185  doi: 10.1021/ja502843f

    21. [21]

      Smith, B. J.; Hwang, N.; Chavez, A. D.; Novotney, J. L.; Dichtel, W. R. Growth rates and water stability of 2D boronate ester covalent organic frameworks. Chem. Commun. 2015, 51, 7532-7535.  doi: 10.1039/C5CC00379B

    22. [22]

      Smith, B. J.; Overholts, A. C.; Hwang, N.; Dichtel, W. R. Insight into the crystallization of amorphous imine-linked polymer networks to 2D covalent organic frameworks. Chem. Commun. 2016, 52, 3690-3693.  doi: 10.1039/C5CC10221A

    23. [23]

      Smith, B. J.; Dichtel, W. R. Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. J. Am. Chem. Soc. 2014, 136, 8783-8789.  doi: 10.1021/ja5037868

    24. [24]

      Bunck, D. N.; Dichtel, W. R. Internal functionalization of three‐dimensional covalent organic frameworks. Angew. Chem. Int. Ed. 2012, 51, 1885-1889.  doi: 10.1002/anie.v51.8

    25. [25]

      Vitaku, E.; Dichtel, W. R. Synthesis of 2D imine-linked covalent organic frameworks through formal transimination reactions. J. Am. Chem. Soc. 2017, 139, 12911−12914.  doi: 10.1021/jacs.7b06913

    26. [26]

      Biswal, B. P.; Chandra, S.; Kandambeth, S.; Lukose, B.; Heine, T.; Banerjee, R. Mechanochemical synthesis of chemically stable isoreticular covalent organic frameworks. J. Am. Chem. Soc. 2013, 135, 5328-5331.  doi: 10.1021/ja4017842

    27. [27]

      Huang, W.; Jiang, Y.; Li, X.; Li, X. J.; Wang, J. Y.; Wu, Q.; Liu, X. K. Solvothermal synthesis of microporous, crystalline covalent organic framework nanofibers and their colorimetric nanohybrid structures. ACS Appl. Mater. Inter. 2013, 5, 8845-8849.  doi: 10.1021/am402649g

    28. [28]

      Xu, H.; Tao, S. S.; Jiang, D. L. Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 2016, 15, 722-726.  doi: 10.1038/nmat4611

    29. [29]

      Kandambeth, S.; Mallick, A.; Lukose, B.; Mane, M. V.; Heine, T.; Banerjee, R. Construction of crystalline 2D covalent organic frameworks with remarkable chemical (acid/base) stability via a combined reversible and irreversible route. J. Am. Chem. Soc. 2012, 134, 19524-19527.  doi: 10.1021/ja308278w

    30. [30]

      Kuecken, S.; Schmidt, J.; Zhi, L.; Thomas, A. Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: A facile synthesis route for covalent triazine frameworks. J. Mater. Chem. A 2015, 3, 24422-24427.  doi: 10.1039/C5TA07408H

    31. [31]

      Gao, Q.; Bai, L.; Zeng, Y.; Wang, P.; Zhang, X.; Zou, R.; Zhao, Y. Reconstruction of covalent organic frameworks by dynamic equilibrium. Chemistry 2015, 21, 16818-16822.  doi: 10.1002/chem.v21.47

    32. [32]

      Iwasawa, N.; Takahagi, H. Boronic esters as a system for crystallization-induced dynamic self-assembly equipped with an " on-off” switch for equilibration. J. Am. Chem. Soc. 2007, 129, 7754-7755.  doi: 10.1021/ja072319q

    33. [33]

      Gilroy, J. B.; Gädt, T.; Whittell, G. R.; Chabanne, L.; Mitchels, J. M.; Richardson, R. M.; Winnik, M. A.; Manners, I. Monodisperse cylindrical micelles by crystallization-driven living self-assembly. Nat. Chem. 2010, 2, 566-570.  doi: 10.1038/nchem.664

    34. [34]

      Chandra, S.; Kandambeth, S.; Biswal, B. P.; Lukose, B.; Kunjir, S. M.; Chaudhary, M.; Babarao, R.; Heine, T.; Banerjee, R. Chemically stable multilayered covalent organic nanosheets from covalent organic frameworks via mechanical delamination. J. Am. Chem. Soc. 2013, 135, 17853-17861.  doi: 10.1021/ja408121p

  • 加载中
    1. [1]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    2. [2]

      Yinyin XuYuanyuan LiJingbo FengChen WangYan ZhangYukun WangXiuwen Cheng . Covalent organic frameworks doped with manganese-metal organic framework for peroxymonosulfate activation. Chinese Chemical Letters, 2024, 35(4): 108838-. doi: 10.1016/j.cclet.2023.108838

    3. [3]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    4. [4]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    5. [5]

      Yuting Wu Haifeng Lv Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375

    6. [6]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    7. [7]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    8. [8]

      Ziyi Zhu Yang Cao Jun Zhang . CO2-switched porous metal-organic framework magnets. Chinese Journal of Structural Chemistry, 2024, 43(2): 100241-100241. doi: 10.1016/j.cjsc.2024.100241

    9. [9]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    10. [10]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    11. [11]

      Feifei WangHang YaoXinyue WuYijian TangYang BaiHui ChongHuan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821

    12. [12]

      Tengjia Ni Xianbiao Hou Huanlei Wang Lei Chu Shuixing Dai Minghua Huang . Controllable defect engineering based on cobalt metal-organic framework for boosting oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100210-100210. doi: 10.1016/j.cjsc.2023.100210

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Ying LiYanjun XuXingqi HanDi HanXuesong WuXinlong WangZhongmin Su . A new metal–organic rotaxane framework for enhanced ion conductivity of solid-state electrolyte in lithium-metal batteries. Chinese Chemical Letters, 2024, 35(9): 109189-. doi: 10.1016/j.cclet.2023.109189

    15. [15]

      Xiangshuai LiJian ZhaoLi LuoZhuohao JiaoYing ShiShengli HouBin Zhao . Visual and portable detection of metronidazole realized by metal-organic framework flexible sensor and smartphone scanning. Chinese Chemical Letters, 2024, 35(10): 109407-. doi: 10.1016/j.cclet.2023.109407

    16. [16]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    17. [17]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

    18. [18]

      Xuying YuJiarong MiYulan HanCai SunMingsheng WangGuocong Guo . A stable radiochromic semiconductive viologen-based metal–organic framework for dual-mode direct X-ray detection. Chinese Chemical Letters, 2024, 35(9): 109233-. doi: 10.1016/j.cclet.2023.109233

    19. [19]

      Benjian Xin Rui Wang Lili Liu Zhiqiang Niu . Metal-organic framework derived MnO@C/CNTs composite for high-rate lithium-based semi-solid flow batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100116-100116. doi: 10.1016/j.cjsc.2023.100116

    20. [20]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

Metrics
  • PDF Downloads(0)
  • Abstract views(666)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return