-
[1]
Dalton, L. R.; Sullivan, P. A.; Bale, D. H. Electric field poled organic electro-optic materials: state of the art and future prospects. Chem. Rev. 2010, 110, 25−55.
doi: 10.1021/cr9000429
-
[2]
Bai, Y.; Song, N. H.; Gao, J. P.; Sun, X.; Wang, X. M.; Yu, G. M.; Wang, Z. Y. A new approach to highly electrooptically active materials using cross-linkable, hyperbranched chromophore-containing oligomers as a macromolecular dopant. J. Am. Chem. Soc. 2005, 127, 2060−2061.
doi: 10.1021/ja042854f
-
[3]
Luo, J. D.; Huang, S.; Shi, Z. W.; Polishak, B. M.; Zhou, X. H.; Jen, A. K. Y. Tailored organic electro-optic materials and their hybrid systems for device applications. Chem. Mater. 2011, 23, 544−553.
doi: 10.1021/cm1022344
-
[4]
Yu, D.; Gharavi, A.; Yu, L. P. Novel aromatic polyimides for nonlinear optics. J. Am. Chem. Soc. 1995, 117, 11680−11686.
doi: 10.1021/ja00152a008
-
[5]
Wu, W. B.; Tang, R.; Li, Q. Q.; Li, Z. Functional hyperbranched polymers with advanced optical, electrical and magnetic properties. Chem. Soc. Rev. 2015, 44, 3997−4022.
doi: 10.1039/C4CS00224E
-
[6]
Bhattacharjee, Y. L, S.; Dalton, L. R. Antiparallel-aligned neutral ground state and zwitterionic chromophores as a nonlinear optical material. J. Am. Chem. Soc. 2006, 128, 6847−6853.
doi: 10.1021/ja057903i
-
[7]
Huang, W.; Jin, Z. A.; Shi, Z. W.; Intemann, J. J.; Li, M.; Luo, J. D.; Jen, A. K. Y. Spontaneous thermal crosslinking of a sydnone containing side-chain polymer with maleimides through a convergent [3 + 2] dual cycloaddition cycloreversion process for electro-optics. Polym. Chem. 2013, 4, 5760−5767.
doi: 10.1039/c3py00694h
-
[8]
Dini, D.; Calvete, M. J. F.; Hanack, M. Nonlinear optical materials for the smart filtering of optical radiation. Chem. Rev. 2016, 116, 2103−2140.
doi: 10.1021/acs.chemrev.5b00515
-
[9]
Benabid, F.; Knight, J. C.; Antonopoulos, G.; Russell, P. S. J. Stimulated raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science 2002, 298, 399−402.
doi: 10.1126/science.1076408
-
[10]
Marks, T. J.; Ratner, M. A. Design, synthesis, and properties of molecule-based assemblies with large second-order optical nonlinearities. Angew. Chem. Int. Ed. 1995, 34, 155−173.
doi: 10.1002/(ISSN)1521-3773
-
[11]
Luo, J. D.; Zhou, X. H.; Jen, A. K. Y. Rational molecular design and supramolecular assembly of highly efficient organic electro-optic materials. J. Mater. Chem. 2009, 19, 7410−7424.
doi: 10.1039/b907173c
-
[12]
Li, Z. A.; Wu, W. B.; Ye, C.; Qin, J. G.; Li, Z. New main-chain hyperbranched polymers: facile synthesis, structural control, and second-order nonlinear optical properties. Polymer 2012, 53, 153−160.
doi: 10.1016/j.polymer.2011.11.015
-
[13]
Li, Z. A.; Wu, W. B.; Ye, C.; Qin, J. G.; Li, Z. New second-order nonlinear optical polymers derived from AB2 and AB monomers via Sonogashira coupling reaction. Macromol. Chem. Phys. 2010, 211, 916−923.
doi: 10.1002/macp.200900605
-
[14]
Wu, W. B.; Fu, Y. J.; Wang, C.; Ye, C.; Qin, J. G.; Li, Z. A series of hyperbranched polytriazoles containing perfluoroaromatic rings from AB2-type monomers: Convenient syntheses by click chemistry under copper(I) catalysis and enhanced optical nonlinearity. Chem. Asian J. 2011, 6, 2787−2795.
doi: 10.1002/asia.v6.10
-
[15]
Wu, W. B.; Ye, C.; Yu, G.; Liu, Y. Q.; Qin, J. G.; Li, Z. New hyperbranched polytriazoles containing isolation chromophore moieties derived from AB4 monomers through click chemistry under copper(I) catalysis: Improved optical transparency and enhanced NLO effects. Chem. Eur. J. 2012, 18, 4426−4434.
doi: 10.1002/chem.v18.14
-
[16]
Li, Z. A.; Wu, W. B.; Ye, C.; Qin, J. G; Li, Z. New hyperbranched polyaryleneethynylene containing azobenzene chromophore moieties in the main chain: facile synthesis, large optical nonlinearity and high thermal stability. Polym. Chem. 2010, 1, 78−81.
-
[17]
Li, Z. A; Yu, G.; Liu, Y. Q.; Ye, C.; Qin, J. G.; Li, Z. Dendronized polyfluorenes with high azo-chromophore loading density: convenient synthesis and enhanced second-order nonlinear optical effects. Macromolecules 2009, 42, 6463−6472.
doi: 10.1021/ma901108r
-
[18]
Chen, P. Y.; Yin, X. Y.; Xie, Y. J.; Li, S. F.; Luo, S. Y.; Zeng, H. Y.; Guo, G. C.; Li, Q. Q.; Li, Z. FTC-containing molecules: large second-order nonlinear optical performance and excellent thermal stability, and the key development of the ‘‘Isolation Chromophore’’ concept. J. Mater. Chem. C 2016, 4, 11474−11481.
doi: 10.1039/C6TC04282A
-
[19]
Holman, J.; Ye, S.; Neivandt, D. J.; Davies, P. B. Studying nanoparticle-induced structural changes within fatty acid multilayer films using sum frequency generation vibrational spectroscopy. J. Am. Chem. Soc. 2004, 126, 14322−14323.
doi: 10.1021/ja046954x
-
[20]
Shi, Z. W.; Luo, J. D.; Jen, A. K. Y. Achieving excellent electro-optic activity and thermal stability in poled polymers through an expeditious crosslinking process. J. Mater. Chem. 2012, 22, 951−959.
doi: 10.1039/C1JM14254B
-
[21]
Tang, R. L.; Chen, H.; Zhou, S. M.; Xiang, W.; Tang, X.; Liu, B.; Dong, Y.; Zeng, H.; Li, Z. New ‘‘X-type’’ second-order nonlinear optical (NLO) dendrimers: fewer chromophore moieties and high NLO effects. Polym. Chem. 2015, 6, 5580−5589.
doi: 10.1039/C5PY00155B
-
[22]
Kolli, B.; Pandey, S.; Mishra, S. P.; Kanai, T.; Joshi, M. P.; Mohan, R. S.; Samu, A. B. Synthesis and characterization of azo-bisbenzylidene-based polymers for second order nonlinear optics. Polym. Chem. 2013, 51, 4317−4324.
doi: 10.1002/pola.26842
-
[23]
Wu, W. B.; Fu, Y. J.; Wang, C.; Xu, Z.; Ye, C.; Qin, J. G.; Li, Z. Second-order nonlinear optical hyperbranched polymer containing isolation chromophore moieties derived from both “H”-type and star-type chromophores. Chinese J. Polym. Sci. 2013, 31, 1415−1423.
doi: 10.1007/s10118-013-1343-3
-
[24]
Li, Z. A.; Li, Z.; Di, C. A.; Zhu, Z. C.; Li, Q. Q.; Zeng, Q.; Zhang, K.; Liu, Y. Q.; Ye, C.; Qin, J. G. Structural control of the side-chain chromophores to achieve highly efficient nonlinear optical polyurethanes. Macromolecules 2006, 39, 6951−6961.
doi: 10.1021/ma0608875
-
[25]
Li, Z. A.; Li, P. C.; Dong, S. C.; Zhu, Z. C.; Li, Q. Q.; Zeng, Q.; Li, Z.; Ye, C.; Qin, J. G. Controlling nonlinear optical effects of polyurethanes by adjusting isolation spacers through facile postfunctional polymer reactions. Polymer 2007, 48, 3650−3657.
doi: 10.1016/j.polymer.2007.04.062
-
[26]
Zeng, Q.; Li, Z. A.; Li, Z.; Ye, C.; Qin, J. G.; Tang, B. Z. Convenient attachment of highly polar azo chromophore moieties to disubstituted polyacetylene through polymer reactions by using “click” chemistry. Macromolecules 2007, 40, 5634−5637.
doi: 10.1021/ma070846o
-
[27]
Chen, P. Y.; Liu, G. C.; Zhang, H. Y.; Jin, M.; Han, M. M.; Cheng, Z. Y.; Peng, Q.; Li, Q. Q.; Li, Z. A rigid ringlike molecule: large second-order nonlinear optical performance, good temporal and thermal stability, and ideal spherical structure conforming to the ‘‘site isolation’’ principle. J. Mater. Chem. C 2018, 6, 6784−6791.
doi: 10.1039/C8TC01598H
-
[28]
Chen, P. Y.; Li, Z. The design of second-order nonlinear optical dendrimers: from “branch only” to “root containing”. Chinese J. Polym. Sci. 2017, 7, 793−798.
-
[29]
Chen, P. Y.; Zhang, H. Y.; Han, M. M.; Cheng, Z. Y.; Peng, Q.; Li, Q. Q.; Li, Z. Janus molecules: large second-order nonlinear optical performance, good temporal stability, excellent thermal stability and spherical structure with optimized dendrimer structure. Mater. Chem. Front. 2018, 2, 1374−1382.
doi: 10.1039/C8QM00128F
-
[30]
Wu, W. B.; Huang, Q.; Qiu, G. F.; Ye, C.; Qin, J. G.; Li, Z. Aromatic/perfluoroaromatic self-assembly effect: an effective strategy to improve the NLO effect. J. Mater. Chem. 2012, 22, 18486−18495.
doi: 10.1039/c2jm33129b
-
[31]
Ma, H.; Liu, S.; Luo, J.; Suresh, S.; Liu, L.; Kang, S. H.; Haller, M.; Sassa, T.; Dalton, L. R.; Jen, A. K. Y. Highly efficient and thermally stable electro-optical dendrimers for photonics. Adv. Funct. Mater. 2002, 12, 565−574.
doi: 10.1002/1616-3028(20020916)12:9<565::AID-ADFM565>3.0.CO;2-8
-
[32]
Wu, W. B.; Huang, L. J.; Song, C. F.; Yu, G.; Ye, C.; Liu, Y. Q.; Qin, J. G.; Li, Q. Q.; Li, Z. Novel global-like second-order nonlinear optical dendrimers: convenient synthesis through powerful click chemistry and large NLO effects achieved by using simple azo chromophore. Chem. Sci. 2012, 3, 1256−1261.
doi: 10.1039/c2sc00834c
-
[33]
Zhu, Z. C.; Li, Z. A.; Tan, Y.; Li, Z.; Li, Q. Q.; Zeng, Q.; Ye, C.; Qin, J. G. New hyperbranched polymers containing second-order nonlinear optical chromophores: synthesis and nonlinear optical characterization. Polymer 2006, 47, 7881−7888.
doi: 10.1016/j.polymer.2006.09.047
-
[34]
Li, Z. A.; Yu, G.; Hu, P.; Ye, C.; Liu, Y. Q.; Qin, J. G.; Li, Z. New azo chromophore containing hyperbranched polytriazoles derived from AB2 monomers via click chemistry under copper(I) catalysis. Macromolecules 2009, 42, 1589−1596.
doi: 10.1021/ma8025223
-
[35]
Ronchi, M.; Pizzotti, M.; Biroli, A. O.; Righetto, S.; Ugo, R. Second-order nonlinear optical (NLO) properties of a multichromophoric system based on an ensemble of four organic NLO chromophores nanoorganized on a cyclotetrasiloxane architecture. J. Phys. Chem. C 2009, 113, 2745−2760.
-
[36]
Yang, H. T.; Tang, R. L.; Wu, W. B.; Liu, W.; Guo, Q.; Liu, Y. L.; Xu, S. G.; Cao, S. K.; Li, Z. A series of dendronized hyperbranched polymers with dendritic chromophore moieties in the periphery: convenient synthesis and large nonlinear optical effects. Polym. Chem. 2016, 7, 4016−4024.
doi: 10.1039/C6PY00546B
-
[37]
Li, Z. A.; Wu, W. B.; Li, Q. Q.; Yu, G.; Xiao, L.; Liu, Y. Q.; Ye, C.; Qin, J. G.; Li, Z. High-generation second-order nonlinear optical (NLO) dendrimers: convenient synthesis by click chemistry and the increasing trend of NLO effects. Angew. Chem. Int. Ed. 2010, 49, 2763−2767.
doi: 10.1002/anie.200906946
-
[38]
Liu, J. L.; Wang, L.; Zhen, Z.; Liu, X. H. Synthesis of novel polyarylate with elecrooptical chromophores as side chain as electro-optic host polymer. Colloid Polym. Sci. 2012, 290, 1215−1220.
doi: 10.1007/s00396-012-2695-x
-
[39]
Liu, W.; Yang, H. T.; Wu, W. B.; Gao, H. Y.; Xu. S. D.; Guo, Q.; Liu, Y. L.; Xu, S. G. Calix [4] resorcinarene-based branched macromolecules for all-optical photorefractive applications. J. Mater. Chem. C 2016, 4, 10684−10690.
doi: 10.1039/C6TC04062D
-
[40]
Hu, C. L.; Chen, Z.; Xiao, H. Y.; Zhen, Z.; Liu, X. H.; Bo, S. H. Synthesis and characterization of a novel indoline based nonlinear optical chromophore with excellent electro-optic activity and high thermal stability by modifying the π-conjugated bridges. J. Mater. Chem. C 2017, 5, 5111−5118.
doi: 10.1039/C7TC00735C
-
[41]
Li, Z.; Qin, J. G.; Li, S. J.; Ye, C.; Luo, J.; Cao, Y. Polyphophazene containing indole-based dual chromophores: synthesis and nonlinear optical characterization. Macromolecules 2002, 35, 9232−9235.
doi: 10.1021/ma020769r
-
[42]
Li, Z.; Huang, C.; Hua, J. L.; Qin, J. G.; Yang, Z.; Ye, C. A new post-functional approach to prepare second-order nonlinear optical polyphophazenes containing sulfonyl-based chromophore. Macromolecules 2004, 37, 371−376.
doi: 10.1021/ma035044h
-
[43]
Wu, W. B.; Li, Z. Further improvement of the macroscopic NLO coefficient and optical transparency of hyperbranched polymers by enhancing the degree of branching. Polym. Chem. 2014, 5, 5100−5108.
doi: 10.1039/C4PY00419A
-
[44]
Wu, W. B.; Ye, S. H.; Huang, L. J.; Yu, G.; Liu, Y. Q.; Qin, J. G.; Li, Z. A functional conjugated hyperbranched polymer derived from tetraphenylethene and oxadiazole moieties: synthesis by one-pot “a4 + b2 + c2” polymerization and applicaion as explosive chemosensor and PLED. Chinese J. Polym. Sci. 2013, 31, 1432−1442.
doi: 10.1007/s10118-013-1328-2