Citation: Serife O. Hacioglu. Copolymerization of Azobenzene-bearing Monomer and 3,4-Ethylenedioxythiophene (EDOT): Improved Electrochemical Performance for Electrochromic Device Applications[J]. Chinese Journal of Polymer Science, ;2020, 38(2): 109-117. doi: 10.1007/s10118-019-2306-0 shu

Copolymerization of Azobenzene-bearing Monomer and 3,4-Ethylenedioxythiophene (EDOT): Improved Electrochemical Performance for Electrochromic Device Applications

  • Corresponding author: Serife O. Hacioglu, serife.hacioglu@iste.edu.tr
  • Received Date: 30 April 2019
    Revised Date: 20 May 2019
    Available Online: 4 September 2019

  • In this study, novel electrochromic copolymers of 3,4-ethylenedioxythiophene (EDOT) and (E)-1,2-bis(2-fluoro-4-(4-hexylthiophen-2-yl)phenyl)diazene (M1) with different monomer feed ratios were designed and synthesized electrochemically. Electrochemical and spectroelectrochemical characterizations were performed using voltammetry and UV-Vis-NIR spectrophotometry techniques to test the applicability of copolymers for electrochromic applications. In terms of electrochemical behaviors, addition of an electron-rich EDOT unit into the azobenzene-containing copolymer increased the electron density on the polymer chain and afforded copolymers with very low oxidation potentials at around 0.30 V. While the homopolymers (P1 and PEDOT) exhibited neutral state absorptions centered at 510 and 583 nm, EDOT-bearing copolymers showed red shifted absorptions compared to those of P1 with narrower optical band gaps. In addition, the poor optical contrast and switching times of azobenzene-bearing homopolymer were significantly improved with EDOT addition into the copolymer chain. As a result of the promising electrochromic and kinetic preperties, CoP1.5-bearing single layer electrochromic device that works between purple and light greenish blue colors was constructed and characterized.
  • 加载中
    1. [1]

      Cheng, X.; Fu, Y.; Zhao, J.; Zhang, Y. Polyaniline with high crystallinity degree: synthesis, structure, and electrochemical properties. J. Appl. Polym. Sci. 2014, 131, 39770−39777.

    2. [2]

      Cansu-Ergun, E. G. Covering the more visible region by electrochemical copolymerization of carbazole and benzothiadiazole based donor-acceptor type monomers. Chinese J. Polym. Sci. 2019, 37, 28−35.  doi: 10.1007/s10118-019-2181-8

    3. [3]

      Guo, B.; Li, W.; Guo, X.; Meng, X.; Ma, W.; Zhang, M.; Li, Y. High efficiency nonfullerene polymer solar cells with thick active layer and large area. Adv. Mater. 2017, 29, 1702291−1702297.  doi: 10.1002/adma.201702291

    4. [4]

      Azeri, O.; Aktas, E.; Istanbulluoglu, C.; Hacioglu, S. O.; Cevher, S. C.; Toppare, L.; Cirpan, A. Efficient benzodithiophene and thienopyrroledione containing random polymers as components for organic solar cells. Polymer 2017, 133, 60−67.  doi: 10.1016/j.polymer.2017.11.024

    5. [5]

      Kamtekar, K. J.; Vaughan, H. L.; Lyons, B. P.; Monkman, A. P.; Pandya, S. U.; Bryce, M. R. Synthesis and spectroscopy of poly(9,9-dioctylfluorene-2,7-diyl-co-2,8-dihexyldibenzothiophene-S,S-dioxide-3,7-diyl)s: solution-processable, deep-blue emitters with a high triplet energy. Macromolecules, 2010, 43, 4481−4488.  doi: 10.1021/ma100566p

    6. [6]

      Lee, K.; Povlich, L. K.; Kim, J. Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors. Analyst 2010, 135, 2179−2189.  doi: 10.1039/c0an00239a

    7. [7]

      Soylemez, S.; Hacioglu, S. O.; Kesik, M.; Unay, H.; Cirpan, A.; Toppare, L. A novel and effective surface design: conducting polymer/β-cyclodextrin host-guest system for cholesterol biosensor. ACS Appl. Mater. Interfaces 2014, 6, 18290−18300.  doi: 10.1021/am5054493

    8. [8]

      Thompson, B. C.; Schottland, P.; Zong, K.; Reynolds, J. R. In situ colorimetric analysis of electrochromic polymers and devices. Chem. Mater. 2000, 12, 1563−1571.  doi: 10.1021/cm000097o

    9. [9]

      Sapp, S. A.; Sotzing, G. A.; Reynolds, J. R. High contrast ratio and fast-switching dual polymer electrochromic devices. Chem. Mater. 1998, 10, 2101−2108.  doi: 10.1021/cm9801237

    10. [10]

      Yoo, S. J.; Cho, J. H.; Lim, J. W.; Park, S. H.; Jang, J.; Sung, Y. E. High contrast ratio and fast switching polymeric electrochromic films based on water-dispersible polyaniline-poly(4-styrenesulfonate) nanoparticles. Electrochem. Commun. 2010, 12, 164−167.  doi: 10.1016/j.elecom.2009.11.014

    11. [11]

      Sonmez, G.; Sonmez, H. B.; Shen, C. K. F.; Jost, R. W.; Rubin, Y.; Wudl, F. A processable green polymeric electrochromic. Macromolecules 2005, 38, 669−675.  doi: 10.1021/ma0484173

    12. [12]

      Roncali, J. Molecular engineering of the band gap of π-conjugated systems: facing technological applications. Macromol. Rapid Commun. 2007, 28, 1761−1775.  doi: 10.1002/(ISSN)1521-3927

    13. [13]

      Gunbas, G.; Toppare, L. Green as it gets; donor-acceptor type polymers as the key to realization of RGB based polymer display devices. Macromol. Symp. 2010, 297, 79−86.  doi: 10.1002/masy.v297.1

    14. [14]

      Nie, G.; Qu, L.; Xu, J. Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene. Electrochim. Acta 2008, 53, 8351−8358.  doi: 10.1016/j.electacta.2008.06.058

    15. [15]

      Han, R.; Lu, S.; Wang, Y.; Zhang, X.; Wu, Q.; He, T. Influence of monomer concentration during polymerization on performance and catalytic mechanism of resultant poly(3,4-ethylenedioxythiophene) counter electrodes for dye-sensitized solar cells. Electrochim. Acta 2015, 173, 796−803.

    16. [16]

      Wang, Z.; Xu, J.; Lu, B.; Zhang, S.; Qin, L.; Mo, D.; Zhen, S. Poly(thieno[3,4-b]-1,4-oxathiane): medium effect on electropolymerization and electrochromic performance. Langmuir 2014, 30, 15581−15589.  doi: 10.1021/la503948f

    17. [17]

      Liu, X.; Hu, Y.; Shen, L.; Zhang, G.; Cao, T.; Xu, J.; Zhao, F.; Hou, J.; Liu, H.; Jiang, F. Novel copolymers based on PEO bridged thiophenes and 3,4-ethylenedioxythiophene: electrochemical, optical, and electrochromic properties. Electrochim. Acta 2018, 288, 52−60.  doi: 10.1016/j.electacta.2018.08.072

    18. [18]

      Hu, Y.; Jiang, F.; Lu, B.; Liu, C.; Hou, J.; Xu, J. Free-standing oligo(oxyethylene)-functionalized polythiophene withthe 3,4-ethylenedioxythiophene building block: electrosynthesis, electrochromic and thermoelectric properties. Electrochim. Acta 2017, 228, 361−370.  doi: 10.1016/j.electacta.2017.01.019

    19. [19]

      Hu, Y.; Wang, Z.; Lin, K.; Xu, J.; Duan, X.; Zhao, F.; Hou, J.; Jiang, F. Electrosynthesis and electrochromic properties of free-standing copolymer based on oligo(oxyethylene) cross-linked 2,2′-bithiophene and 3,4-ethylenedioxythiophene. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 1583−1592.  doi: 10.1002/pola.v54.11

    20. [20]

      He, L.; Freeman, H. S.; Nakpathom, M.; Boyle, P. D. Synthesis and X-ray analysis of a perfluoroalkyl-substituted azobenzene dye. Dyes Pigments 2015, 120, 245−250.  doi: 10.1016/j.dyepig.2015.04.014

    21. [21]

      Gong, C. B.; He, L. H.; Long, J. F.; Liu, L. T.; Liu, S.; Tang, Q.; Fu, X. K. Synthesis and characterisation of azobenzene-bridged cationic-cationic and neutral-cationic electrochromic materials. Synthetic Met. 2016, 220, 147−154.  doi: 10.1016/j.synthmet.2016.06.011

    22. [22]

      Ferreira, J.; Santos, M. J. L.; Matos, R.; Ferreira, O. P.; Rubira, A. F.; Girotto, E. M. Structural and electrochromic study of polypyrrole synthesized with azo and anthraquinone dyes. J. Electroanal. Chem. 2006, 591, 27−32.  doi: 10.1016/j.jelechem.2006.03.016

    23. [23]

      Pei, X.; Fernandes, A.; Mathy, B.; Laloyaux, X.; Nysten, B.; Riant, O.; Jonas, A. M. Correlation between the structure and wettability of photoswitchable hydrophilic azobenzene monolayers on silicon. Langmuir 2011, 27, 9403−9412.  doi: 10.1021/la201526u

    24. [24]

      Apaydin, D. H.; Akpinar, H.; Sendur, M.; Toppare, L. Electrochromism in multichromic conjugated polymers: thiophene and azobenzene derivatives on the main chain. J. Electroanal. Chem. 2012, 665, 52−57.  doi: 10.1016/j.jelechem.2011.11.016

    25. [25]

      Yigit, D.; Udum, Y. A.; Güllü, M.; Toppare, L. Electrochemical and optical properties of novel terthienyl based azobenzene, coumarine and fluorescein containing polymers: multicolored electrochromic polymers. J. Electroanal. Chem. 2014, 712, 215−222.  doi: 10.1016/j.jelechem.2013.11.028

    26. [26]

      Yagmur, I.; Ak, M.; Bayrakceken, A. Fabricating multicolored electrochromic devices using conducting copolymers. Smart Mater. Struct. 2013, 22, 115022−115030.  doi: 10.1088/0964-1726/22/11/115022

    27. [27]

      Soganci, T.; Kurtay, G.; Ak, M.; Güllü, M. Preparation of an EDOT-based polymer: optoelectronic properties and electrochromic device application. RSC Adv. 2014, 5, 2630−2639.

    28. [28]

      De Paoli, M. A.; Gazotti, W. A. Electrochemistry, polymers and opto-electronic devices: a combination with a future. J. Braz. Chem. Soc. 2002, 13, 410−424.

    29. [29]

      Camurlu P.; Gultekin, C. A comprehensive study on utilization of N-substituted poly(2,5-dithienylpyrrole) derivatives in electrochromic devices. Sol. Energy Mater. Sol. Cells 2012, 107, 142−147.  doi: 10.1016/j.solmat.2012.07.031

  • 加载中
    1. [1]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    2. [2]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    3. [3]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

Metrics
  • PDF Downloads(0)
  • Abstract views(2216)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return