Phase Behaviors of Soft-core Particle Systems
- Corresponding author: Ning Xu, ningxu@ustc.edu.cn
Citation: Ning Xu. Phase Behaviors of Soft-core Particle Systems[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1065-1082. doi: 10.1007/s10118-019-2304-2
Debenedetti, P. G.; Stillinger, F. H. Supercooled liquids and the glass transition. Nature 2001, 410, 259–267.
doi: 10.1038/35065704
Berthier, L.; Biroli, G. Theoretical perspective on the glass transition and amorphous materials. Rev. of Mod. Phys. 2011, 83, 587–645.
doi: 10.1103/RevModPhys.83.587
Ediger, M. D.; Harrowell, P. Perspective: Supercooled liquids and glasses. J. Chem. Phys. 2012, 137, 080901.
doi: 10.1063/1.4747326
Strandburg, K. J. Two-dimensional melting. Rev. Mod. Phys. 1988, 60, 161–207.
doi: 10.1103/RevModPhys.60.161
Dash, J. G. History of the search for continuous melting. Rev. Mod. Phys. 1999, 71, 1737–1743.
doi: 10.1103/RevModPhys.71.1737
Gasser, U. Crystallization in three- and two-dimensional colloidal suspensions. J. Phys.-Condens. Matter 2009, 21, 203101.
doi: 10.1088/0953-8984/21/20/203101
Kosterlitz, J. M.; Thouless, D. J. Ordering, metastability and phase-transitions in 2 dimensional systems. J. Phys. C-Solid State Phys. 1973, 6, 1181–1203.
doi: 10.1088/0022-3719/6/7/010
Halperin, B. I.; Nelson, D. R. Theory of 2-dimensional melting. Phys. Rev. Lett. 1978, 41, 121–124.
doi: 10.1103/PhysRevLett.41.121
Nelson, D. R.; Halperin, B. I. Dislocation-mediated melting in 2 dimensions. Phys. Rev. B 1979, 19, 2457–2484.
doi: 10.1103/PhysRevB.19.2457
Young, A. P. Melting and the vector coulomb gas in 2 dimensions. Phys. Rev. B 1979, 19, 1855–1866.
doi: 10.1103/PhysRevB.19.1855
Bladon, P.; Frenkel, D. Dislocation unbinding in dense 2-dimensional crystals. Phys. Rev. Lett. 1995, 74, 2519–2522.
doi: 10.1103/PhysRevLett.74.2519
Marcus, A. H.; Rice, S. A. Observations of first-order liquid-to-hexatic and hexaticto-solid phase transitions in a confined colloid suspension. Phys. Rev. Lett. 1996, 77, 2577–2580.
doi: 10.1103/PhysRevLett.77.2577
Murray, C. A.; Vanwinkle, D. H. Experimental-observation of 2-stage melting in a classical two-dimensional screened coulomb system. Phys. Rev. Lett. 1987, 58, 1200–1203.
doi: 10.1103/PhysRevLett.58.1200
Zahn, K.; Lenke, R.; Maret, G. Two-stage melting of paramagnetic colloidal crystals in two dimensions. Phys. Rev. Lett. 1999, 82, 2721–2724.
doi: 10.1103/PhysRevLett.82.2721
von Grunberg, H. H.; Keim, P.; Zahn, K.; Maret, G. Elastic behavior of a twodimensional crystal near melting. Phys. Rev. Lett. 2004, 93, 255703.
doi: 10.1103/PhysRevLett.93.255703
Lin, B.-J.; Chen, L.-J. Phase transitions in two-dimensional colloidal particles at oil/water interfaces. J. Chem. Phys. 2007, 126, 034706.
doi: 10.1063/1.2409677
Qi, W.-K.; Wang, Z.; Han, Y.; Chen, Y. Melting in two-dimensional Yukawa systems: A Brownian dynamics simulation. J. Chem. Phys. 2010, 133, 234508.
doi: 10.1063/1.3506875
Shiba, H.; Onuki, A.; Araki, T. Structural and dynamical heterogeneities in twodimensional melting. Europhys. Lett. 2009, 86, 66004.
doi: 10.1209/0295-5075/86/66004
Prestipino, S.; Saija, F.; Giaquinta, P. V. Hexatic phase and water-like anomalies in a two-dimensional fluid of particles with a weakly softened core. J. Chem. Phys. 2012, 137, 104503.
doi: 10.1063/1.4749260
Alba-Simionesco, C.; Coasne, B.; Dosseh, G.; Dudziak, G.; Gubbins, K. E.; Radhakrishnan, R.; Sliwinska-Bartkowiak, M. Effects of confinement on freezing and melting. J. Phys.-Condens. Matter 2006, 18, R15–R68.
doi: 10.1088/0953-8984/18/6/R01
Chui, S. T. Grain-boundary theory of melting in 2 dimensions. Phys. Rev. Lett. 1982, 48, 933–935.
doi: 10.1103/PhysRevLett.48.933
Lansac, Y.; Glaser, M. A.; Clark, N. A. Discrete elastic model for two-dimensional melting. Phys. Rev. E 2006, 73, 041501.
doi: 10.1103/PhysRevE.73.041501
Almudallal, A. M.; Buldyrev, S. V.; Saika-Voivod, I. Inverse melting in a twodimensional off-lattice model. J. Chem. Phys. 2014, 140, 144505.
doi: 10.1063/1.4870086
Bernard, E. P.; Krauth, W. Two-step melting in two dimensions: First-order liquidhexatic transition. Phys. Rev. Lett. 2011, 107, 155704.
doi: 10.1103/PhysRevLett.107.155704
Engel, M.; Anderson, J. A.; Glotzer, S. C.; Isobe, M.; Bernard, E. P.; Krauth, W. Hard-disk equation of state: First-order liquid-hexatic transition in two dimensions with three simulation methods. Phys. Rev. E 2013, 87, 042134.
doi: 10.1103/PhysRevE.87.042134
Kapfer, S. C.; Krauth, W. Two-dimensional melting: From liquid-hexatic coexistence to continuous transitions. Phys. Rev. Lett. 2015, 114, 035702.
doi: 10.1103/PhysRevLett.114.035702
Terao, T. Tetratic phase of Hertzian spheres: Monte Carlo simulation. J. Chem. Phys. 2013, 139, 134501.
doi: 10.1063/1.4822101
Zu, M. J.; Liu, J.; Tong, H.; Xu, N. Density affects the nature of the hexatic-liquid transition in two-dimensional melting of soft-core systems. Phys. Rev. Lett. 2016, 117, 085702.
doi: 10.1103/PhysRevLett.117.085702
Shechtman, D.; Blech, I.; Gratias, D.; Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 1984, 53, 1951–1953.
doi: 10.1103/PhysRevLett.53.1951
Levine, D.; Steinhardt, P. J. Quasicrystals - A new class of ordered structures. Phys. Rev. Lett. 1984, 53, 2477–2480.
doi: 10.1103/PhysRevLett.53.2477
Steurer, W. Twenty years of structure research on quasicrystals. Part 1. Pentagonal, octagonal, decagonal and dodecagonal quasicrystals. Z. F. Kristallographie 2004, 219, 391–446.
Dzugutov, M. Formation of a dodecagonal quasi-crystalline phase in a simple monatomic liquid. Phys. Rev. Lett. 1993, 70, 2924–2927.
doi: 10.1103/PhysRevLett.70.2924
Engel, M.; Trebin, H.-R. Self-assembly of monatomic complex crystals and quasicrystals with a double-well interaction potential. Phys. Rev. Lett. 2007, 98, 225505.
doi: 10.1103/PhysRevLett.98.225505
Iacovella, C. R.; Keys, A. S.; Glotzer, S. C. Self-assembly of soft-matter quasicrystals and their approximants. Proc. Natl. Acad. Sci. USA 2011, 108, 20935–20940.
doi: 10.1073/pnas.1019763108
Archer, A. J.; Rucklidge, A. M.; Knobloch, E. Quasicrystalline order and a crystalliquid state in a soft-core fluid. Phys. Rev. Lett. 2013, 111, 165501.
doi: 10.1103/PhysRevLett.111.165501
Dotera, T.; Oshiro, T.; Ziherl, P. Mosaic two-lengthscale quasicrystals. Nature 2014, 506, 208–211.
doi: 10.1038/nature12938
Haji-Akbari, A.; Engel, M.; Keys, A. S.; Zheng, X.; Petschek, R. G.; PalffyMuhoray, P.; Glotzer, S. C. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 2009, 462, 773–U91.
Reinhardt, A.; Romano, F.; Doye, J. P. K. Computing phase diagrams for a quasicrystal-forming patchy-particle system. Phys. Rev. Lett. 2013, 110, 255503.
doi: 10.1103/PhysRevLett.110.255503
Engel, M.; Damasceno, P. F.; Phillips, C. L.; Glotzer, S. C. Computational selfassembly of a one-component icosahedral quasicrystal. Nat. Mater. 2015, 14, 109–116.
doi: 10.1038/nmat4152
Liu, A. J.; Nagel, S. R. Nonlinear dynamics - Jamming is not just cool any more. Nature 1998, 396, 21–22.
doi: 10.1038/23819
Liu, A. J.; Nagel, S. R. The jamming transition and the marginally jammed solid. Ann. Rev. of Condens. Matter Phys. 2010, 1, 347–369.
doi: 10.1146/annurev-conmatphys-070909-104045
van Hecke, M. Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys.-Condens. Matter 2010, 22.
Torquato, S.; Truskett, T. M.; Debenedetti, P. G. Is random close packing of spheres well defined? Phys. Rev. Lett. 2000, 84, 2064–2067.
doi: 10.1103/PhysRevLett.84.2064
Torquato, S.; Stillinger, F. H. Jammed hard-particle packings: From Kepler to Bernal and beyond. Rev. Mod. Phys. 2010, 82, 2633–2672.
doi: 10.1103/RevModPhys.82.2633
O'Hern, C. S.; Silbert, L. E.; Liu, A. J.; Nagel, S. R. Jamming at zero temperature and zero applied stress: The epitome of disorder. Phys. Rev. E 2003, 68, 011306.
doi: 10.1103/PhysRevE.68.011306
Parisi, G.; Zamponi, F. Mean-field theory of hard sphere glasses and jamming. Rev. Mod. Phys. 2010, 82, 789–845.
doi: 10.1103/RevModPhys.82.789
Xu, N. Mechanical, vibrational, and dynamical properties of amorphous systems near jamming. Front. Phys. 2011, 6, 109–123.
doi: 10.1007/s11467-010-0102-y
Ikeda, A.; Berthier, L.; Sollich, P. Unified study of glass and jamming rheology in soft particle systems. Phys. Rev. Lett. 2012, 109, 018301.
doi: 10.1103/PhysRevLett.109.018301
Urbani, P.; Zamponi, F. Shear yielding and shear jamming of dense hard sphere glasses. Phys. Rev. Lett. 2017, 118, 038001.
doi: 10.1103/PhysRevLett.118.038001
Xu, N.; Blawzdziewicz, J.; O'Hern, C. S. Random close packing revisited: Ways to pack frictionless disks. Phys. Rev. E 2005, 71, 061306.
doi: 10.1103/PhysRevE.71.061306
Chaudhuri, P.; Berthier, L.; Sastry, S. Jamming transitions in amorphous packings of frictionless spheres occur over a continuous range of volume fractions. Phys. Rev. Lett. 2010, 104, 165701.
doi: 10.1103/PhysRevLett.104.165701
Charbonneau, P.; Kurchan, J.; Parisi, G.; Urbani, P.; Zamponi, F. Glass and jamming transitions: From exact results to finite-dimensional descriptions. Ann. Rev. Condens. Matter Phys. 2017, 8, 265–288.
doi: 10.1146/annurev-conmatphys-031016-025334
Charbonneau, P.; Kurchan, J.; Parisi, G.; Urbani, P.; Zamponi, F. Fractal free energy landscapes in structural glasses. Nat. Commun. 2014, 5, 3725.
doi: 10.1038/ncomms4725
Berthier, L.; Coslovich, D.; Ninarello, A.; Ozawa, M. Equilibrium sampling of hard spheres up to the jamming density and beyond. Phys. Rev. Lett. 2016, 116, 238002.
doi: 10.1103/PhysRevLett.116.238002
Zhang, Z.; Xu, N.; Chen, D. T. N.; Yunker, P.; Alsayed, A. M.; Aptowicz, K. B.; Habdas, P.; Liu, A. J.; Nagel, S. R.; Yodh, A. G. Thermal vestige of the zero-temperature jamming transition. Nature 2009, 459, 230–233.
doi: 10.1038/nature07998
Urich, M.; Denton, A. R. Swelling, structure, and phase stability of compressible microgels. Soft Matter 2016, 12, 9086–9094.
doi: 10.1039/C6SM02056A
Miyazaki, R.; Kawasaki, T.; Miyazaki, K. Cluster glass transition of ultrasoft-potential fluids at high density. Phys. Rev. Lett. 2016, 117, 165701.
doi: 10.1103/PhysRevLett.117.165701
Xu, N.; Haxton, T. K.; Liu, A. J.; Nagel, S. R. Equivalence of glass transition and colloidal glass transition in the hard-sphere limit. Phys. Rev. Lett. 2009, 103, 245701.
doi: 10.1103/PhysRevLett.103.245701
Khrapak, S. A.; Morfill, G. E. Accurate freezing and melting equations for the LennardJones system. J. Chem. Phys. 2011, 134, 094108.
doi: 10.1063/1.3561698
Likos, C. N.; Lang, A.; Watzlawek, M.; Lowen, H. Criterion for determining clustering versus reentrant melting behavior for bounded interaction potentials. Phys. Rev. E 2001, 63, 031206.
doi: 10.1103/PhysRevE.63.031206
Pamies, J. C.; Cacciuto, A.; Frenkel, D. Phase diagram of Hertzian spheres. J. Chem. Phys. 2009, 131, 044514.
doi: 10.1063/1.3186742
Athanasopoulou, L.; Ziherl, P. Phase diagram of elastic spheres. Soft Matter 2017, 13, 1463–1471.
doi: 10.1039/C6SM02474B
Allen, M. P.; Tildesley, D. J. Computer simulation of liquids. Oxford Science Publications, New York, 1987.
Bitzek, E.; Koskinen, P.; Gahler, F.; Moseler, M.; Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 2006, 97, 170201.
doi: 10.1103/PhysRevLett.97.170201
Alexander, S. Amorphous solids: Their structure, lattice dynamics and elasticity. Phys. Rep. 1998, 296, 65–236.
doi: 10.1016/S0370-1573(97)00069-0
Wyart, M. On the rigidity of amorphous solids. Ann. Phys. 2005, 30, 1–+.
doi: 10.1051/anphys:2006003
Ellenbroek, W. G.; Somfai, E.; van Hecke, M.; van Saarloos, W. Critical scaling in linear response of frictionless granular packings near jamming. Phys. Rev. Lett. 2006, 97, 258001.
doi: 10.1103/PhysRevLett.97.258001
Olsson, P.; Teitel, S. Critical scaling of shear viscosity at the jamming transition. Phys. Rev. Lett. 2007, 99, 178001.
doi: 10.1103/PhysRevLett.99.178001
Wang, L.; Xu, N. Critical scaling in thermal systems near the zero-temperature jamming transition. Soft Matter 2013, 9, 2475–2483.
doi: 10.1039/c2sm27148f
Liao, Q.; Xu, N. Criticality of the zero-temperature jamming transition probed by self-propelled particles. Soft Matter 2018, 14, 853–860.
doi: 10.1039/C7SM01909B
Liu, H.; Xie, X.; Xu, N. Finite size analysis of zero-temperature jamming transition under applied shear stress by minimizing a thermodynamic-like potential. Phys. Rev. Lett. 2014, 112, 145502.
doi: 10.1103/PhysRevLett.112.145502
Drocco, J. A.; Hastings, M. B.; Reichhardt, C. J. O.; Reichhardt, C. Multiscaling at point J: Jamming is a critical phenomenon. Phys. Rev. Lett. 2005, 95.
doi: 10.1103/PhysRevLett.95.088001
Keys, A. S.; Abate, A. R.; Glotzer, S. C.; Durian, D. J. Measurement of growing dynamical length scales and prediction of the jamming transition in a granular material. Nat. Phys. 2007, 3, 260–264.
doi: 10.1038/nphys572
Head, D. A. Critical scaling and aging in cooling systems near the jamming transition. Phys. Rev. Lett. 2009, 102, 138001.
doi: 10.1103/PhysRevLett.102.138001
Hatano, T. Scaling properties of granular rheology near the jamming transition. J. Phys. Soc. Japan 2008, 77, 123002.
doi: 10.1143/JPSJ.77.123002
Goodrich, C. P.; Liu, A. J.; Nagel, S. R. Finite-size scaling at the jamming transition. Phys. Rev. Lett. 2012, 109, 095704.
doi: 10.1103/PhysRevLett.109.095704
Graves, A. L.; Nashed, S.; Padgett, E.; Goodrich, C. P.; Liu, A. J.; Sethna, J. P. Pinning susceptibility: The effect of dilute, quenched disorder on jamming. Phys. Rev. Lett. 2016, 116, 235501.
doi: 10.1103/PhysRevLett.116.235501
Xu, N.; Vitelli, V.; Wyart, M.; Liu, A. J.; Nagel, S. R. Energy transport in jammed sphere packings. Phys. Rev. Lett. 2009, 102, 038001.
doi: 10.1103/PhysRevLett.102.038001
Silbert, L. E.; Liu, A. J.; Nagel, S. R. Structural signatures of the unjamming transition at zero temperature. Phys. Rev. E 2006, 73, 041304.
Plischke, M.; Bergersen, B. Equilibrium statistical physics, World Scientific Publishing Co. Pte. Ltd., 2007.
Wang, X.; Zheng, W.; Wang, L.; Xu, N. Disordered solids without well-defined transverse phonons: The nature of hard-sphere glasses. Phys. Rev. Lett. 2015, 114, 035502.
doi: 10.1103/PhysRevLett.114.035502
Xu, N.; Vitelli, V.; Liu, A. J.; Nagel, S. R. Anharmonic and quasi-localized vibrations in jammed solids-Modes for mechanical failure. Europhys. Lett. 2010, 90, 56001.
doi: 10.1209/0295-5075/90/56001
Phillips, W. A. Amorphous solids. Low temperature properties. Berlin, SpringerVerlag, 1981.
Chumakov, A. I.; Sergueev, I.; van Burck, U.; Schirmacher, W.; Asthalter, T.; Ruffer, R.; Leupold, O.; Petry, W. Collective nature of the boson peak and universal transboson dynamics of glasses. Phys. Rev. Lett. 2004, 92, 245508.
doi: 10.1103/PhysRevLett.92.245508
Sokolov, A. P.; Buchenau, U.; Steffen, W.; Frick, B.; Wischnewski, A. Comparison of Raman- and neutron-scattering data for glass-forming systems. Phys. Rev. B 1995, 52, R9815–R9818.
doi: 10.1103/PhysRevB.52.R9815
Schober, H. R.; Ruocco, G. Size effects and quasilocalized vibrations. Phil. Mag. 2004, 84, 1361–1372.
doi: 10.1080/14786430310001644107
Allen, P. B.; Feldman, J. L.; Fabian, J.; Wooten, F. Diffusons, locons and propagons: character of atomic vibrations in amorphous Si. Phil. Mag. B 1999, 79, 1715–1731.
doi: 10.1080/13642819908223054
Widmer-Cooper, A.; Perry, H.; Harrowell, P.; Reichman, D. R. Irreversible reorganization in a supercooled liquid originates from localized soft modes. Nat. Phys. 2008, 4, 711–715.
doi: 10.1038/nphys1025
Ioffe, A. F.; Regel, A. R. Non-crystalline, amorphous and liquid electronic semiconductors. Prog. Semiconductors 1960, 4, 237–291.
Shintani, H.; Tanaka, H. Universal link between the boson peak and transverse phonons in glass. Nat. Mater. 2008, 7, 870–877.
doi: 10.1038/nmat2293
Hansen, J. P.; McDonald, I. R. Theory of simple liquids. Elsevier, Amsterdam, 1986.
Marchetti, M. C.; Joanny, J. F.; Ramaswamy, S.; Liverpool, T. B.; Prost, J.; Rao, M.; Simha, R. A. Hydrodynamics of soft active matter. Rev. Mod. Phys. 2013, 85, 1143.
doi: 10.1103/RevModPhys.85.1143
Bechinger, C.; Di Leonardo, R.; Loewen, H.; Reichhardt, C.; Volpe, G.; Volpe, G. Active particles in complex and crowded environments. Rev. Mod. Phys. 2016, 88, 045006.
doi: 10.1103/RevModPhys.88.045006
Briand, G.; Schindler, M.; Dauchot, O. Spontaneously flowing crystal of self-propelled particles. Phys. Rev. Lett. 2018, 120, 208001.
doi: 10.1103/PhysRevLett.120.208001
Berthier, L. Nonequilibrium glassy dynamics of self-propelled hard disks. Phys. Rev. Lett. 2014, 112, 220602.
doi: 10.1103/PhysRevLett.112.220602
Bialke, J.; Loewen, H.; Speck, T. Microscopic theory for the phase separation of self-propelled repulsive disks. Europhys. Lett. 2013, 103, 30008.
doi: 10.1209/0295-5075/103/30008
Bialke, J.; Siebert, J. T.; Loewen, H.; Speck, T. Negative interfacial tension in phaseseparated active brownian particles. Phys. Rev. Lett. 2015, 115, 098301.
doi: 10.1103/PhysRevLett.115.098301
Bialke, J.; Speck, T.; Loewen, H. Active colloidal suspensions: Clustering and phase behavior. J. Non-Cryst. Solids 2015, 407, 367–375.
doi: 10.1016/j.jnoncrysol.2014.08.011
Buttinoni, I.; Bialke, J.; Kuemmel, F.; Loewen, H.; Bechinger, C.; Speck, T. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 2013, 110, 238301.
doi: 10.1103/PhysRevLett.110.238301
Fily, Y.; Henkes, S.; Marchetti, M. C. Freezing and phase separation of self-propelled disks. Soft Matter 2014, 10, 2132–2140.
doi: 10.1039/C3SM52469H
Fily, Y.; Marchetti, M. C. Athermal phase separation of self-propelled particles with no alignment. Phys. Rev. Lett. 2012, 108, 235702.
doi: 10.1103/PhysRevLett.108.235702
Henkes, S.; Fily, Y.; Marchetti, M. C. Active jamming: Self-propelled soft particles at high density. Phys. Rev. E 2011, 84, 040301.
doi: 10.1103/PhysRevE.84.040301
Marchetti, M. C.; Fily, Y.; Henkes, S.; Patch, A.; Yllanes, D. Minimal model of active colloids highlights the role of mechanical interactions in controlling the emergent behavior of active matter. Curr. opinion in colloid & interf. Sci. 2016, 21, 34–43.
Mognetti, B. M.; Saric, A.; Angioletti-Uberti, S.; Cacciuto, A.; Valeriani, C.; Frenkel, D. Living clusters and crystals from low-density suspensions of active colloids. Phys. Rev. Lett. 2013, 111, 245702.
doi: 10.1103/PhysRevLett.111.245702
Ni, R.; Stuart, M. A. C.; Dijkstra, M. Pushing the glass transition towards random close packing using self-propelled hard spheres. Nat. Commun. 2013, 4, 2704.
doi: 10.1038/ncomms3704
Palacci, J.; Sacanna, S.; Steinberg, A. P.; Pine, D. J.; Chaikin, P. M. Living crystals of light-activated colloidal surfers. Science 2013, 339, 936–940.
doi: 10.1126/science.1230020
Redner, G. S.; Hagan, M. F.; Baskaran, A. Structure and dynamics of a phaseseparating active colloidal fluid. Phys. Rev. Lett. 2013, 110, 055701.
doi: 10.1103/PhysRevLett.110.055701
Reichhardt, C.; Reichhardt, C. J. O. Active matter transport and jamming on disordered landscapes. Phys. Rev. E 2014, 90, 012701.
Reichhardt, C.; Reichhardt, C. J. O. Absorbing phase transitions and dynamic freezing in running active matter systems. Soft Matter 2014, 10, 7502–7510.
doi: 10.1039/C4SM01273A
Theurkauff, I.; Cottin-Bizonne, C.; Palacci, J.; Ybert, C.; Bocquet, L. Dynamic clustering in active colloidal suspensions with chemical signaling. Phys. Rev. Lett. 2012, 108, 268303.
doi: 10.1103/PhysRevLett.108.268303
Yang, X.; Manning, M. L.; Marchetti, M. C. Aggregation and segregation of confined active particles. Soft Matter 2014, 10, 6477–6484.
doi: 10.1039/C4SM00927D
Yan, J.; Han, M.; Zhang, J.; Xu, C.; Luijten, E.; Granick, S. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 2016, 15, 1095–+.
doi: 10.1038/nmat4696
Tong, H.; Tan, P.; Xu, N. From crystals to disordered crystals: A hidden order-disorder transition. Sci. Rep. 2015, 5, 15378.
doi: 10.1038/srep15378
Mizuno, H.; Mossa, S.; Barrat, J.-L. Elastic heterogeneity, vibrational states, and thermal conductivity across an amorphisation transition. Europhys. Lett. 2013, 104, 56001.
doi: 10.1209/0295-5075/104/56001
Goodrich, C. P.; Liu, A. J.; Nagel, S. R. Solids between the mechanical extremes of order and disorder. Nat. Phys. 2014, 10, 578–581.
doi: 10.1038/nphys3006
Zhao, C.; Tian, K.; Xu, N. New jamming scenario: From marginal jamming to deep jamming. Phys. Rev. Lett. 2011, 106, 125503.
doi: 10.1103/PhysRevLett.106.125503
Wang, L.; Xu, N. Probing the glass transition from structural and vibrational properties of zero-temperature glasses. Phys. Rev. Lett. 2014, 112, 055701.
doi: 10.1103/PhysRevLett.112.055701
Singh, S.; Ediger, M. D.; de Pablo, J. J. Ultrastable glasses from in silico vapour deposition. Nat. Mater. 2013, 12, 139–144.
doi: 10.1038/nmat3521
Wang, L.; Duan, Y.; Xu, N. Non-monotonic pressure dependence of the dynamics of soft glass-formers at high compressions. Soft Matter 2012, 8, 11831–11838.
doi: 10.1039/c2sm26510a
Lee, S. I.; Lee, S. J. Effect of the range of the potential on two-dimensional melting. Phys. Rev. E 2008, 78, 041504.
doi: 10.1103/PhysRevE.78.041504
Bolhuis, P.; Hagen, M.; Frenkel, D. Isostructural solid-solid transition in crystalline systems with short-ranged interaction. Phys. Rev. E 1994, 50, 4880–4890.
doi: 10.1103/PhysRevE.50.4880
Zu, M.; Tan, P.; Xu, N. Forming quasicrystals by monodisperse soft core particles. Nat. Commun. 2017, 8, 2089.
doi: 10.1038/s41467-017-02316-3
Dzugutov, M. Phason dynamics and atomic transport in an equilibrium dodecagonal quasi-crystal. Europhys. Lett. 1995, 31, 95–100.
doi: 10.1209/0295-5075/31/2/006
Kalugin, P. A.; Katz, A. A mechanism for self-diffusion in quasi-crystals. Europhys. Lett. 1993, 21, 921–926.
doi: 10.1209/0295-5075/21/9/008
Roth, J.; Gahler, F. Atomic self-diffusion in dodecagonal quasicrystals. Euro. Phys. J. B 1998, 6, 425–445.
doi: 10.1007/s100510050570
Watzlawek, M.; Likos, C. N.; Lowen, H. Phase diagram of star polymer solutions. Phys. Rev. Lett. 1999, 82, 5289–5292.
doi: 10.1103/PhysRevLett.82.5289
Osterman, N.; Babic, D.; Poberaj, I.; Dobnikar, J.; Ziherl, P. Observation of condensed phases of quasiplanar core-softened colloids. Phys. Rev. Lett. 2007, 99, 248301.
doi: 10.1103/PhysRevLett.99.248301
Peng, Y.; Wang, F.; Wang, Z.; Alsayed, A. M.; Zhang, Z.; Yodh, A. G.; Han, Y. Two-step nucleation mechanism in solid-solid phase transitions. Nat. Mater. 2015, 14, 101–108.
doi: 10.1038/nmat4083
Zaccarelli, E. Colloidal gels: equilibrium and non-equilibrium routes. J. Phys.-Condens. Matter 2007, 19, 323101.
doi: 10.1088/0953-8984/19/32/323101
Koeze, D. J.; Tighe, B. P. Sticky matters: Jamming and rigid cluster statistics with attractive particle interactions. Phys. Rev. Lett. 2018, 121, 188002.
doi: 10.1103/PhysRevLett.121.188002
Lois, G.; Blawzdziewicz, J.; O'Hern, C. S. Jamming transition and new percolation universality classes in particulate systems with attraction. Phys. Rev. Lett. 2008, 100, 028001.
doi: 10.1103/PhysRevLett.100.028001
Zheng, W.; Liu, H.; Xu, N. Shear-induced solidification of athermal systems with weak attraction. Phys. Rev. E 2016, 94, 062608.
doi: 10.1103/PhysRevE.94.062608
Yan Cheng , Hai-Quan Yao , Ya-Di Zhang , Chao Shi , Heng-Yun Ye , Na Wang . Nitrate-bridged hybrid organic-inorganic perovskites. Chinese Journal of Structural Chemistry, 2024, 43(9): 100358-100358. doi: 10.1016/j.cjsc.2024.100358
Tian Yang , Yi Liu , Lina Hua , Yaoyao Chen , Wuqian Guo , Haojie Xu , Xi Zeng , Changhao Gao , Wenjing Li , Junhua Luo , Zhihua Sun . Lead-free hybrid two-dimensional double perovskite with switchable dielectric phase transition. Chinese Chemical Letters, 2024, 35(6): 108707-. doi: 10.1016/j.cclet.2023.108707
Zhuoer Cai , Yinan Zhang , Xiu-Ni Hua , Baiwang Sun . Phase transition arising from order-disorder motion in stable layered two-dimensional perovskite. Chinese Journal of Structural Chemistry, 2024, 43(11): 100426-100426. doi: 10.1016/j.cjsc.2024.100426
Shengyu Zhao , Qinhao Shi , Wuliang Feng , Yang Liu , Xinxin Yang , Xingli Zou , Xionggang Lu , Yufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606
Zhenzhu Wang , Chenglong Liu , Yunpeng Ge , Wencan Li , Chenyang Zhang , Bing Yang , Shizhong Mao , Zeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Lu LIU , Huijie WANG , Haitong WANG , Ying LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489
Xuan Zhu , Lin Zhou , Xiao-Yun Huang , Yan-Ling Luo , Xin Deng , Xin Yan , Yan-Juan Wang , Yan Qin , Yuan-Yuan Tang . (Benzimidazolium)2GeI4: A layered two-dimensional perovskite with dielectric switching and broadband near-infrared photoluminescence. Chinese Journal of Structural Chemistry, 2024, 43(6): 100272-100272. doi: 10.1016/j.cjsc.2024.100272
Yuting Wu , Haifeng Lv , Xiaojun Wu . Design of two-dimensional porous covalent organic framework semiconductors for visible-light-driven overall water splitting: A theoretical perspective. Chinese Journal of Structural Chemistry, 2024, 43(11): 100375-100375. doi: 10.1016/j.cjsc.2024.100375
Changhui Yu , Peng Shang , Huihui Hu , Yuening Zhang , Xujin Qin , Linyu Han , Caihe Liu , Xiaohan Liu , Minghua Liu , Yuan Guo , Zhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805
Pengcheng Su , Shizheng Chen , Zhihong Yang , Ningning Zhong , Chenzi Jiang , Wanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Yan-Bo Li , Yi Li , Liang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294
Xue Xin , Qiming Qu , Islam E. Khalil , Yuting Huang , Mo Wei , Jie Chen , Weina Zhang , Fengwei Huo , Wenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654
Shu Lin , Kezhen Qi . Phase-dependent lithium-alloying reactions for lithium-metal batteries. Chinese Chemical Letters, 2024, 35(4): 109431-. doi: 10.1016/j.cclet.2023.109431
Wangyan Hu , Ke Li , Xiangnan Dou , Ning Li , Xiayan Wang . Nano-sized stationary phase packings retained by single-particle frit for microchip liquid chromatography. Chinese Chemical Letters, 2024, 35(4): 108806-. doi: 10.1016/j.cclet.2023.108806
Zhaohong Chen , Mengzhen Li , Jinfei Lan , Shengqian Hu , Xiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548
Zhi-Yuan Yue , Hua-Kai Li , Na Wang , Shan-Shan Liu , Le-Ping Miao , Heng-Yun Ye , Chao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355
Tiankai Sun , Hui Min , Zongsu Han , Liang Wang , Peng Cheng , Wei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718