Citation: Tao Chen, Guo-Cheng Zhong, Yuan-Ting Zhang, Li-Ming Zhao, Yong-Jun Qiu. Bio-based and Biodegradable Electrospun Fibers Composed of Poly(L-lactide) and Polyamide 4[J]. Chinese Journal of Polymer Science, ;2020, 38(1): 53-62. doi: 10.1007/s10118-019-2299-8 shu

Bio-based and Biodegradable Electrospun Fibers Composed of Poly(L-lactide) and Polyamide 4

  • Corresponding author: Tao Chen, tchen@ecust.edu.cn
  • Received Date: 22 March 2019
    Revised Date: 7 May 2019
    Available Online: 19 September 2019

  • Novel bio-based and biodegradable block copolymers were synthesized by " click” reaction between poly(L-lactide) (PLLA) and polyamide 4 (PA4). Upon tuning the molar mass of PLLA block, the properties of copolymers and electrospun ultrafine fibers were investigated and compared with those of PLLA and PA4 blends. PLLA and PA4 were found incompatible and formed individual crystalline regions, along with reciprocal inhibition in crystallization. Electrospun fibers were highly hydrophobic, even if hydrophilic PA4 was the rich component. The crystallinity of either PLLA or PA4 decreased after electrospinning and PLLA-rich as-spun fibers were almost amorphous. Immersion tests proved that fibers of block copolymers were relatively homogeneous with micro-phase separation between PLLA and PA4. The fibrous structures of copolymers were different from those of the fibers electrospun from blends, for which sheath-core structure induced by macro-phase separation between homopolymers of PLLA and PA4 was confirmed by TEM, EDS, and XPS.
  • 
    1. [1]

      Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic acid technology. Adv. Mater. 2000, 12, 1841−1846.  doi: 10.1002/(ISSN)1521-4095

    2. [2]

      Isono, T.; Kondo, Y.; Otsuka, I.; Nishiyama, Y.; Borsali, R.; Kakuchi, T.; Satoh, T. Synthesis and stereocomplex formation of star-shaped stereoblock polylactides consisting of poly(L-lactide) and poly(D-lactide) arms. Macromolecules 2013, 46, 8509−8518.  doi: 10.1021/ma401375x

    3. [3]

      Li, T.; Zhang, J.; Schneiderman, D. K.; Francis, L. F.; Bates, F. S. Toughening glassy poly(lactide) with block copolymer micelles. ACS Macro Lett. 2016, 5, 359−364.  doi: 10.1021/acsmacrolett.6b00063

    4. [4]

      Kakroodi, A. R.; Kazemi, Y.; Nofar, M.; Park, C. B. Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chem. Eng. J. 2017, 308, 772−782.  doi: 10.1016/j.cej.2016.09.130

    5. [5]

      Chen, L.; Hu, K.; Sun, S. T.; Jiang, H.; Huang, D.; Zhang, K. Y.; Pan, L.; Li, Y. S. Toughening poly(lactic acid) with imidazolium-based elastomeric ionomers. Chinese J. Polym. Sci. 2018, 36, 1342−1352.  doi: 10.1007/s10118-018-2143-6

    6. [6]

      Chiu, F. C.; Wang, S. W.; Peng, K. Y.; Lee, R. S. Synthesis and characterization of amphiphilic PLA-(PαN3CL-g-PBA) copolymers by ring-opening polymerization and click reaction. Polymer 2012, 53, 3476−3484.  doi: 10.1016/j.polymer.2012.06.004

    7. [7]

      Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338−356.  doi: 10.1016/j.progpolymsci.2009.12.003

    8. [8]

      Rogalsky, S.; Bardeau, J. F.; Wu, H.; Lyoshina, L.; Bulko, O.; Tarasyuk, O.; Makhno, S.; Cherniavska, T.; Kyselov, Y.; Koo, J. H. Structural, thermal and antibacterial properties of polyamide 11/polymeric biocide polyhexamethylene guanidine dodecylbenzenesulfonate composites. J. Mater. Sci. 2016, 51, 7716−7730.  doi: 10.1007/s10853-016-0054-x

    9. [9]

      Ge, Y. P.; Yuan, D.; Luo, Z. L.; Wang, B. B. Synthesis and characterization of poly(ester amide) from renewable resources through melt polycondensation. eXPRESS Polym. Lett. 2014, 8, 50−54.  doi: 10.3144/expresspolymlett.2014.6

    10. [10]

      Stoclet, G.; Seguela, R.; Lefebvre, J. M. Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11. Polymer 2011, 52, 1417−1425.  doi: 10.1016/j.polymer.2011.02.002

    11. [11]

      Fonseca, A. C.; Gil, M. H.; Simões, P. N. Biodegradable poly(ester amide)s—a remarkable opportunity for the biomedical area: Review on the synthesis, characterization and applications. Prog. Polym. Sci. 2014, 39, 1291−1311.  doi: 10.1016/j.progpolymsci.2013.11.007

    12. [12]

      Nakayama, A.; Yamano, N.; Kawasaki, N.; Nakayama, Y. Synthesis and biodegradation of poly(2-pyrrolidone-co-ε-caprolactone)s. Polym. Degrad. Stab. 2013, 98, 1882−1888.  doi: 10.1016/j.polymdegradstab.2013.04.011

    13. [13]

      Massimo, L.; Arturo, L. Q. M. Block copolymers as a tool for nanomaterial fabrication. Adv. Mater. 2003, 15, 1583−1594.  doi: 10.1002/(ISSN)1521-4095

    14. [14]

      Gardella, L.; Mincheva, R.; De Winter, J.; Tachibana, Y.; Raquez, J. M.; Dubois, P.; Monticelli, O. Synthesis, characterization and stereocomplexation of polyamide 11/polylactide diblock copolymers. Eur. Polym. J. 2018, 98, 83−93.  doi: 10.1016/j.eurpolymj.2017.11.008

    15. [15]

      Barnes, C. E. Nylon 4-development and commercialization. Lenzinger Ber. 1987, 62, 62−66.

    16. [16]

      Kawasaki, N.; Yamano, N.; Nakayama, A. Polyamide 4-block-poly(vinyl acetate) via a polyamide4 azo macromolecular initiator: thermal and mechanical behavior, biodegradation, and morphology. J. Appl. Polym. Sci. 2015, 132, 42466.

    17. [17]

      Tachibana, K.; Hashimoto, K.; Yoshikawa, M.; Okawa, H. Isolation and characterization of microorganisms degrading nylon 4 in the composted soil. Polym. Degrad. Stab. 2010, 95, 912−917.  doi: 10.1016/j.polymdegradstab.2010.03.031

    18. [18]

      Kazuhiko, H.; Tsuyoshi, H.; Masahiko, O. Degradation of several polyamides in soils. J. Appl. Polym. Sci. 1994, 54, 1579−1583.  doi: 10.1002/app.1994.070541023

    19. [19]

      Tachibana, K.; Urano, Y.; Numata, K. Biodegradability of nylon 4 film in a marine environment. Polym. Degrad. Stab. 2013, 98, 1847−1851.  doi: 10.1016/j.polymdegradstab.2013.05.007

    20. [20]

      Kawasaki, N.; Nakayama, A.; Yamano, N.; Takeda, S.; Kawata, Y.; Yamamoto, N.; Aiba, S. I. Synthesis, thermal and mechanical properties and biodegradation of branched polyamide 4. Polymer 2005, 46, 9987−9993.  doi: 10.1016/j.polymer.2005.06.092

    21. [21]

      Yamano, N.; Kawasaki, N.; Ida, S.; Nakayama, Y.; Nakayama, A. Biodegradation of polyamide 4 in vivo. Polym. Degrad. Stab. 2017, 137, 281−288.  doi: 10.1016/j.polymdegradstab.2017.02.004

    22. [22]

      Kim, J. W.; Kim, H. S. Synthesis and characteristics of poly(L-lactic acid-block-γ-aminobutyric acid). Text. Sci. Eng. 2015, 52, 53−58.  doi: 10.12772/TSE.2015.52.053

    23. [23]

      Lowe, A. B. Thiol-ene " click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 2010, 1, 17−36.  doi: 10.1039/B9PY00216B

    24. [24]

      Li, M. Q.; Tang, Z. H.; Wang, C.; Zhang, Y.; Cui, H. T.; Chen, X. S. Efficient side-chain modification of dextran via base-catalyzed epoxide ring-opening and thiol-ene click chemistry in aqueous media. Chinese. J. Polym. Sci. 2014, 32, 969−974.  doi: 10.1007/s10118-014-1489-7

    25. [25]

      Liu, W.; Dong, C. M. Versatile strategy for the synthesis of hyperbranched poly(ε-caprolactone)s and polypseudorotaxanes thereof. Macromolecules 2010, 43, 8447−8455.  doi: 10.1021/ma101730m

    26. [26]

      Hou, X.; Li, Q.; He, Y.; Jia, L.; Li, Y.; Zhu, Y.; Cao, A. Visualization of spontaneous aggregates by diblock poly(styrene)-b-poly(L-lactide)/poly(D-lactide) pairs in solution with new fluorescent CdSe quantum dot labels. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 1393−1405.

    27. [27]

      Kalarickal, N. C.; Rimmer, S.; Sarker, P.; Leroux, J. C. Thiol-functionalized poly(ethylene glycol)-b-polyesters synthesis and characterization. Macromolecules 2007, 40, 1874−1880.  doi: 10.1021/ma062377g

    28. [28]

      Hoyle, C. E.; Lee, T. Y.; Roper, T. Thiol-enes: chemistry of the past with promise for the future. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 5301−5338.  doi: 10.1002/(ISSN)1099-0518

    29. [29]

      Montañez, M. I.; Campos, L. M.; Antoni, P.; Hed, Y.; Walter, M. V.; Krull, B. T.; Khan, A.; Hult, A.; Hawker, C. J.; Malkoch, M. Accelerated growth of dendrimers via thiol-ene and esterification reactions. Macromolecules 2010, 43, 6004−6013.  doi: 10.1021/ma1009935

    30. [30]

      Cho, A. R.; Shin, D. M.; Jung, H. W.; Hyun, J. C.; Lee, J. S.; Cho, D.; Joo, Y. L. Effect of annealing on the crystallization and properties of electrospun polylatic acid and nylon 6 fibers. J. Appl. Polym. Sci. 2011, 120, 752−758.  doi: 10.1002/app.v120.2

    31. [31]

      Baji, A.; Mai, Y. W.; Wong, S. C.; Abtahi, M.; Chen, P. Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol. 2010, 70, 703−718.  doi: 10.1016/j.compscitech.2010.01.010

    32. [32]

      Giller, C. B.; Chase, D. B.; Rabolt, J. F.; Snively, C. M. Effect of solvent evaporation rate on the crystalline state of electrospun nylon 6. Polymer 2010, 51, 4225−4230.  doi: 10.1016/j.polymer.2010.06.057

    33. [33]

      Schroeder, L. R.; Cooper, S. L. Hydrogen bonding in polyamides. J. Appl. Polym. Sci. 1976, 47, 4310−4317.

    34. [34]

      Zhang, P.; Tian, R.; Na, B.; Lv, R.; Liu, Q. Intermolecular ordering as the precursor for stereocomplex formation in the electrospun polylactide fibers. Polymer 2015, 60, 221−227.  doi: 10.1016/j.polymer.2015.01.049

    35. [35]

      Li, Y. J.; Chen, F.; Nie, J.; Yang, D. Z. Electrospun poly(lactic acid)/chitosan core-shell structure nanofibers from homogeneous solution. Carbohyd. Polym. 2012, 90, 1445−1451.  doi: 10.1016/j.carbpol.2012.07.013

    36. [36]

      Zhang, J. F.; Yang, D. Z.; Xu, F.; Zhang, Z. P.; Yin, R. X.; Nie, J. Electrospun core-shell structure nanofibers from homogeneous solution of poly(ethylene oxide)/chitosan. Macromolecules 2009, 42, 5278−5284.  doi: 10.1021/ma900657y

    1. [1]

      Drumright, R. E.; Gruber, P. R.; Henton, D. E. Polylactic acid technology. Adv. Mater. 2000, 12, 1841−1846.  doi: 10.1002/(ISSN)1521-4095

    2. [2]

      Isono, T.; Kondo, Y.; Otsuka, I.; Nishiyama, Y.; Borsali, R.; Kakuchi, T.; Satoh, T. Synthesis and stereocomplex formation of star-shaped stereoblock polylactides consisting of poly(L-lactide) and poly(D-lactide) arms. Macromolecules 2013, 46, 8509−8518.  doi: 10.1021/ma401375x

    3. [3]

      Li, T.; Zhang, J.; Schneiderman, D. K.; Francis, L. F.; Bates, F. S. Toughening glassy poly(lactide) with block copolymer micelles. ACS Macro Lett. 2016, 5, 359−364.  doi: 10.1021/acsmacrolett.6b00063

    4. [4]

      Kakroodi, A. R.; Kazemi, Y.; Nofar, M.; Park, C. B. Tailoring poly(lactic acid) for packaging applications via the production of fully bio-based in situ microfibrillar composite films. Chem. Eng. J. 2017, 308, 772−782.  doi: 10.1016/j.cej.2016.09.130

    5. [5]

      Chen, L.; Hu, K.; Sun, S. T.; Jiang, H.; Huang, D.; Zhang, K. Y.; Pan, L.; Li, Y. S. Toughening poly(lactic acid) with imidazolium-based elastomeric ionomers. Chinese J. Polym. Sci. 2018, 36, 1342−1352.  doi: 10.1007/s10118-018-2143-6

    6. [6]

      Chiu, F. C.; Wang, S. W.; Peng, K. Y.; Lee, R. S. Synthesis and characterization of amphiphilic PLA-(PαN3CL-g-PBA) copolymers by ring-opening polymerization and click reaction. Polymer 2012, 53, 3476−3484.  doi: 10.1016/j.polymer.2012.06.004

    7. [7]

      Rasal, R. M.; Janorkar, A. V.; Hirt, D. E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338−356.  doi: 10.1016/j.progpolymsci.2009.12.003

    8. [8]

      Rogalsky, S.; Bardeau, J. F.; Wu, H.; Lyoshina, L.; Bulko, O.; Tarasyuk, O.; Makhno, S.; Cherniavska, T.; Kyselov, Y.; Koo, J. H. Structural, thermal and antibacterial properties of polyamide 11/polymeric biocide polyhexamethylene guanidine dodecylbenzenesulfonate composites. J. Mater. Sci. 2016, 51, 7716−7730.  doi: 10.1007/s10853-016-0054-x

    9. [9]

      Ge, Y. P.; Yuan, D.; Luo, Z. L.; Wang, B. B. Synthesis and characterization of poly(ester amide) from renewable resources through melt polycondensation. eXPRESS Polym. Lett. 2014, 8, 50−54.  doi: 10.3144/expresspolymlett.2014.6

    10. [10]

      Stoclet, G.; Seguela, R.; Lefebvre, J. M. Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11. Polymer 2011, 52, 1417−1425.  doi: 10.1016/j.polymer.2011.02.002

    11. [11]

      Fonseca, A. C.; Gil, M. H.; Simões, P. N. Biodegradable poly(ester amide)s—a remarkable opportunity for the biomedical area: Review on the synthesis, characterization and applications. Prog. Polym. Sci. 2014, 39, 1291−1311.  doi: 10.1016/j.progpolymsci.2013.11.007

    12. [12]

      Nakayama, A.; Yamano, N.; Kawasaki, N.; Nakayama, Y. Synthesis and biodegradation of poly(2-pyrrolidone-co-ε-caprolactone)s. Polym. Degrad. Stab. 2013, 98, 1882−1888.  doi: 10.1016/j.polymdegradstab.2013.04.011

    13. [13]

      Massimo, L.; Arturo, L. Q. M. Block copolymers as a tool for nanomaterial fabrication. Adv. Mater. 2003, 15, 1583−1594.  doi: 10.1002/(ISSN)1521-4095

    14. [14]

      Gardella, L.; Mincheva, R.; De Winter, J.; Tachibana, Y.; Raquez, J. M.; Dubois, P.; Monticelli, O. Synthesis, characterization and stereocomplexation of polyamide 11/polylactide diblock copolymers. Eur. Polym. J. 2018, 98, 83−93.  doi: 10.1016/j.eurpolymj.2017.11.008

    15. [15]

      Barnes, C. E. Nylon 4-development and commercialization. Lenzinger Ber. 1987, 62, 62−66.

    16. [16]

      Kawasaki, N.; Yamano, N.; Nakayama, A. Polyamide 4-block-poly(vinyl acetate) via a polyamide4 azo macromolecular initiator: thermal and mechanical behavior, biodegradation, and morphology. J. Appl. Polym. Sci. 2015, 132, 42466.

    17. [17]

      Tachibana, K.; Hashimoto, K.; Yoshikawa, M.; Okawa, H. Isolation and characterization of microorganisms degrading nylon 4 in the composted soil. Polym. Degrad. Stab. 2010, 95, 912−917.  doi: 10.1016/j.polymdegradstab.2010.03.031

    18. [18]

      Kazuhiko, H.; Tsuyoshi, H.; Masahiko, O. Degradation of several polyamides in soils. J. Appl. Polym. Sci. 1994, 54, 1579−1583.  doi: 10.1002/app.1994.070541023

    19. [19]

      Tachibana, K.; Urano, Y.; Numata, K. Biodegradability of nylon 4 film in a marine environment. Polym. Degrad. Stab. 2013, 98, 1847−1851.  doi: 10.1016/j.polymdegradstab.2013.05.007

    20. [20]

      Kawasaki, N.; Nakayama, A.; Yamano, N.; Takeda, S.; Kawata, Y.; Yamamoto, N.; Aiba, S. I. Synthesis, thermal and mechanical properties and biodegradation of branched polyamide 4. Polymer 2005, 46, 9987−9993.  doi: 10.1016/j.polymer.2005.06.092

    21. [21]

      Yamano, N.; Kawasaki, N.; Ida, S.; Nakayama, Y.; Nakayama, A. Biodegradation of polyamide 4 in vivo. Polym. Degrad. Stab. 2017, 137, 281−288.  doi: 10.1016/j.polymdegradstab.2017.02.004

    22. [22]

      Kim, J. W.; Kim, H. S. Synthesis and characteristics of poly(L-lactic acid-block-γ-aminobutyric acid). Text. Sci. Eng. 2015, 52, 53−58.  doi: 10.12772/TSE.2015.52.053

    23. [23]

      Lowe, A. B. Thiol-ene " click” reactions and recent applications in polymer and materials synthesis. Polym. Chem. 2010, 1, 17−36.  doi: 10.1039/B9PY00216B

    24. [24]

      Li, M. Q.; Tang, Z. H.; Wang, C.; Zhang, Y.; Cui, H. T.; Chen, X. S. Efficient side-chain modification of dextran via base-catalyzed epoxide ring-opening and thiol-ene click chemistry in aqueous media. Chinese. J. Polym. Sci. 2014, 32, 969−974.  doi: 10.1007/s10118-014-1489-7

    25. [25]

      Liu, W.; Dong, C. M. Versatile strategy for the synthesis of hyperbranched poly(ε-caprolactone)s and polypseudorotaxanes thereof. Macromolecules 2010, 43, 8447−8455.  doi: 10.1021/ma101730m

    26. [26]

      Hou, X.; Li, Q.; He, Y.; Jia, L.; Li, Y.; Zhu, Y.; Cao, A. Visualization of spontaneous aggregates by diblock poly(styrene)-b-poly(L-lactide)/poly(D-lactide) pairs in solution with new fluorescent CdSe quantum dot labels. J. Polym. Sci., Part B: Polym. Phys. 2009, 47, 1393−1405.

    27. [27]

      Kalarickal, N. C.; Rimmer, S.; Sarker, P.; Leroux, J. C. Thiol-functionalized poly(ethylene glycol)-b-polyesters synthesis and characterization. Macromolecules 2007, 40, 1874−1880.  doi: 10.1021/ma062377g

    28. [28]

      Hoyle, C. E.; Lee, T. Y.; Roper, T. Thiol-enes: chemistry of the past with promise for the future. J. Polym. Sci., Part A: Polym. Chem. 2004, 42, 5301−5338.  doi: 10.1002/(ISSN)1099-0518

    29. [29]

      Montañez, M. I.; Campos, L. M.; Antoni, P.; Hed, Y.; Walter, M. V.; Krull, B. T.; Khan, A.; Hult, A.; Hawker, C. J.; Malkoch, M. Accelerated growth of dendrimers via thiol-ene and esterification reactions. Macromolecules 2010, 43, 6004−6013.  doi: 10.1021/ma1009935

    30. [30]

      Cho, A. R.; Shin, D. M.; Jung, H. W.; Hyun, J. C.; Lee, J. S.; Cho, D.; Joo, Y. L. Effect of annealing on the crystallization and properties of electrospun polylatic acid and nylon 6 fibers. J. Appl. Polym. Sci. 2011, 120, 752−758.  doi: 10.1002/app.v120.2

    31. [31]

      Baji, A.; Mai, Y. W.; Wong, S. C.; Abtahi, M.; Chen, P. Electrospinning of polymer nanofibers: effects on oriented morphology, structures and tensile properties. Compos. Sci. Technol. 2010, 70, 703−718.  doi: 10.1016/j.compscitech.2010.01.010

    32. [32]

      Giller, C. B.; Chase, D. B.; Rabolt, J. F.; Snively, C. M. Effect of solvent evaporation rate on the crystalline state of electrospun nylon 6. Polymer 2010, 51, 4225−4230.  doi: 10.1016/j.polymer.2010.06.057

    33. [33]

      Schroeder, L. R.; Cooper, S. L. Hydrogen bonding in polyamides. J. Appl. Polym. Sci. 1976, 47, 4310−4317.

    34. [34]

      Zhang, P.; Tian, R.; Na, B.; Lv, R.; Liu, Q. Intermolecular ordering as the precursor for stereocomplex formation in the electrospun polylactide fibers. Polymer 2015, 60, 221−227.  doi: 10.1016/j.polymer.2015.01.049

    35. [35]

      Li, Y. J.; Chen, F.; Nie, J.; Yang, D. Z. Electrospun poly(lactic acid)/chitosan core-shell structure nanofibers from homogeneous solution. Carbohyd. Polym. 2012, 90, 1445−1451.  doi: 10.1016/j.carbpol.2012.07.013

    36. [36]

      Zhang, J. F.; Yang, D. Z.; Xu, F.; Zhang, Z. P.; Yin, R. X.; Nie, J. Electrospun core-shell structure nanofibers from homogeneous solution of poly(ethylene oxide)/chitosan. Macromolecules 2009, 42, 5278−5284.  doi: 10.1021/ma900657y

  • 加载中
    1. [1]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    2. [2]

      Guanxiong YuChengkai XuHuaqiang JuJie RenGuangpeng WuChengjian ZhangXinghong ZhangZhen XuWeipu ZhuHao-Cheng YangHaoke ZhangJianzhao LiuZhengwei MaoYang ZhuQiao JinKefeng RenZiliang WuHanying Li . Key progresses of MOE key laboratory of macromolecular synthesis and functionalization in 2023. Chinese Chemical Letters, 2024, 35(11): 109893-. doi: 10.1016/j.cclet.2024.109893

    3. [3]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    4. [4]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    5. [5]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    6. [6]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    7. [7]

      Manman OuYunjian ZhuJiahao LiuZhaoxuan LiuJianjun WangJun SunChuanxiang QinLixing Dai . Polyvinyl alcohol fiber with enhanced strength and modulus and intense cyan fluorescence based on covalently functionalized graphene quantum dots. Chinese Chemical Letters, 2025, 36(2): 110510-. doi: 10.1016/j.cclet.2024.110510

    8. [8]

      Yuling MaDongqing LiuTao ZhangChengjie SongDongmei LiuPeizhi WangWei Wang . Bimetallic composite carbon fiber with persulfate mediation for intercepting volatile organic compounds during solar interfacial evaporation. Chinese Chemical Letters, 2025, 36(3): 110000-. doi: 10.1016/j.cclet.2024.110000

    9. [9]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    10. [10]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    11. [11]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    12. [12]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    13. [13]

      Rui WangYang LiangJulius Rebek Jr.Yang Yu . Stabilization and detection of labile reaction intermediates in supramolecular containers. Chinese Chemical Letters, 2024, 35(6): 109228-. doi: 10.1016/j.cclet.2023.109228

    14. [14]

      Xin LiZhen XuDonglei BuJinming CaiHuamei ChenQi ChenTing ChenFang ChengLifeng ChiWenjie DongZhenchao DongShixuan DuQitang FanXing FanQiang FuSong GaoJing GuoWeijun GuoYang HeShimin HouYing JiangHuihui KongBaojun LiDengyuan LiJie LiQing LiRuoning LiShuying LiYuxuan LinMengxi LiuPeinian LiuYanyan LiuJingtao LüChuanxu MaHaoyang PanJinLiang PanMinghu PanXiaohui QiuZiyong ShenShijing TanBing WangDong WangLi WangLili WangTao WangXiang WangXingyue WangXueyan WangYansong WangYu WangKai WuWei XuNa XueLinghao YanFan YangZhiyong YangChi ZhangXue ZhangYang ZhangYao ZhangXiong ZhouJunfa ZhuYajie ZhangFeixue GaoYongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055

    15. [15]

      Tiantian LongHongmei LuoJingbo SunFengniu LuYi ChenDong XuZhiqin Yuan . Carbonization-engineered ultrafast chemical reaction on nanointerface. Chinese Chemical Letters, 2025, 36(3): 109728-. doi: 10.1016/j.cclet.2024.109728

    16. [16]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    17. [17]

      Xianxu ChuLu WangJunru LiHui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105

    18. [18]

      Kebo XieQian ZhangFei YeJungui Dai . A multi-enzymatic cascade reaction for the synthesis of bioactive C-oligosaccharides. Chinese Chemical Letters, 2024, 35(6): 109028-. doi: 10.1016/j.cclet.2023.109028

    19. [19]

      Zhao LiHuimin YangWenjing ChengLin Tian . Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chinese Chemical Letters, 2024, 35(9): 109237-. doi: 10.1016/j.cclet.2023.109237

    20. [20]

      Kunsong HuYulong ZhangJiayi ZhuJinhua MaiGang LiuManoj Krishna SugumarXinhua LiuFeng ZhanRui Tan . Nano-engineered catalysts for high-performance oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(10): 109423-. doi: 10.1016/j.cclet.2023.109423

Metrics
  • PDF Downloads(0)
  • Abstract views(761)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return