Citation: Jiang-Ping Xu, Jin-Tao Zhu. Block Copolymer Colloidal Particles with Unique Structures through Three-dimensional Confined Assembly and Disassembly[J]. Chinese Journal of Polymer Science, ;2019, 37(8): 744-759. doi: 10.1007/s10118-019-2294-0 shu

Block Copolymer Colloidal Particles with Unique Structures through Three-dimensional Confined Assembly and Disassembly

  • Corresponding author: Jin-Tao Zhu, jtzhu@mail.hust.edu.cn
  • Received Date: 29 March 2019
    Revised Date: 14 May 2019
    Available Online: 17 June 2019

  • Structured block copolymer (BCP) particles have gained increasing attention due to their potential applications in separation, catalysis, controlled release, and other fields. Three-dimensional (3D) confined assembly has been proved as a facile yet robust approach for generating BCP particles with controllable shapes and internal structures. In this feature article, we summarized the preparation of structured polymeric particles through 3D confined self-assembly of BCPs. The effects of interfacial interactions, degree of confinement, and additives on the shape and internal structure of BCP microparticles were comprehensively discussed. In addition, we highlighted the recent progress in using disassembly as a route to synthesize colloidal particles with unique structures. Two strategies were introduced in this part: (a) disassembling the discrete domains resulted in mesoporous microparticles; (b) disassembling the continuous domains led to the dissociation of microparticles into micelle-like nano-objects. The applications of the structured colloidal particles in photonic crystals, controlled release, and directed growth of inorganic materials were also presented. Finally, we discussed the current challenges and future opportunities in this promising area.
  • 加载中
    1. [1]

      Yu, H.; Qiu, X.; Nunes, S. P.; Peinemann, K. V. Biomimetic block copolymer particles with gated nanopores and ultrahigh protein sorption capacity. Nat. Commun. 2014, 5, 4110.  doi: 10.1038/ncomms5110

    2. [2]

      Otsuka, H.; Nagasaki, Y.; Kataoka, K. PEGylated nanoparticles for biological and pharmaceutical applications. Adv. Drug Delivery Rev. 2003, 55, 403-419.  doi: 10.1016/S0169-409X(02)00226-0

    3. [3]

      Pham, H. H.; Gourevich, I.; Oh, J. K.; Jonkman, J. E. N.; Kumacheva, E. A multidye nanostructured material for optical data storage and security data encryption. Adv. Mater. 2004, 16, 516-520.  doi: 10.1002/(ISSN)1521-4095

    4. [4]

      Yi, Z.; Zhang, P. B.; Liu, C. J.; Zhu, L. P. Symmetrical permeable membranes consisting of overlapped block copolymer cylindrical micelles for nanoparticle size fractionation. Macromolecules 2016, 49, 3343-3351.  doi: 10.1021/acs.macromol.6b00166

    5. [5]

      Bakshi, M. S. Colloidal micelles of block copolymers as nanoreactors, templates for gold nanoparticles, and vehicles for biomedical applications. Adv. Colloid Interface Sci. 2014, 213, 1-20.  doi: 10.1016/j.cis.2014.08.001

    6. [6]

      Wang, W. C.; Peng, C.; Shi, K.; Pan, Y. X.; Zhang, H. S.; Ji, X. L. Double emulsion droplets as microreactors for synthesis of magnetic macroporous polymer beads. Chinese J. Polym. Sci. 2014, 32, 1639-1645.  doi: 10.1007/s10118-014-1543-5

    7. [7]

      Lee, J. H.; Lee, C. S.; Cho, K. Y. Enhanced cell adhesion to the dimpled surfaces of golf-ball-shaped microparticles. ACS Appl. Mater. Interfaces 2014, 6, 16493-16497.  doi: 10.1021/am505997s

    8. [8]

      Wang, L.; Yamauchi, Y., Facile Synthesis of three-dimensional dendritic platinum nanoelectrocatalyst. Chem. Mater. 2009, 21, 3562-3569.  doi: 10.1021/cm901161g

    9. [9]

      Champion, J. A.; Mitragotri, S. Role of target geometry in phagocytosis. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 4930-4934.  doi: 10.1073/pnas.0600997103

    10. [10]

      Sacanna, S.; Korpics, M.; Rodriguez, K.; Colon-Melendez, L.; Kim, S. H.; Pine, D. J.; Yi, G. R., Shaping colloids for self-assembly. Nat. Commun. 2013, 4, 1688.  doi: 10.1038/ncomms2694

    11. [11]

      Chen, Q.; Bae, S. C.; Granick, S., Directed self-assembly of a colloidal kagome lattice. Nature 2011, 469, 381-384.  doi: 10.1038/nature09713

    12. [12]

      Koh, L. B.; Rodriguez, I.; Venkatraman, S. S. The effect of topography of polymer surfaces on platelet adhesion. Biomaterials 2010, 31, 1533-1545.  doi: 10.1016/j.biomaterials.2009.11.022

    13. [13]

      Shen, L.; Zhu, J. Heterogeneous surfaces to repel proteins. Adv. Colloid Interface Sci. 2016, 228, 40-54.  doi: 10.1016/j.cis.2015.11.008

    14. [14]

      Shezad, K.; Zhang, K.; Hussain, M.; Dong, H.; He, C.; Gong, X.; Xie, X.; Zhu, J.; Shen, L. Surface roughness modulates diffusion and fibrillation of amyloid-beta peptide. Langmuir 2016, 32, 8238-8244.  doi: 10.1021/acs.langmuir.6b01756

    15. [15]

      Wang, K.; Liu, L.; Xie, J.; Shen, L.; Tao, J.; Zhu, J. facile strategy to generate aligned polymer nanofibers: effects on cell adhesion. ACS Appl. Mater. Interfaces 2018, 10, 1566-1574.  doi: 10.1021/acsami.7b16057

    16. [16]

      Kawaguchi, H., Functional polymer microspheres. Prog. Polym. Sci. 2000, 25, 1171-1210.  doi: 10.1016/S0079-6700(00)00024-1

    17. [17]

      Riess, G.; Labbe, C. Block copolymers in emulsion and dispersion polymerization. Macromol. Rapid Commun. 2004, 25, 401-435.  doi: 10.1002/(ISSN)1521-3927

    18. [18]

      Tanaka, T.; Komatsu, Y.; Fujibayashi, T.; Minami, H.; Okubo, M., A novel approach for preparation of micrometer-sized, monodisperse dimple and hemispherical polystyrene particles. Langmuir 2010, 26, 3848-3853.  doi: 10.1021/la903309t

    19. [19]

      Kim, S. H.; Hollingsworth, A. D.; Sacanna, S.; Chang, S. J.; Lee, G.; Pine, D. J.; Yi, G. R. Synthesis and assembly of colloidal particles with sticky dimples. J. Am. Chem. Soc. 2012, 134, 16115-16118.  doi: 10.1021/ja305865w

    20. [20]

      Andala, D. M.; Shin, S. H. R.; Lee, H. Y.; Bishop, K. J. M. Templated synthesis of amphiphilic nanoparticles at the liquid-liquid interface. ACS Nano 2012, 6, 1044-1050.  doi: 10.1021/nn202556b

    21. [21]

      Luo, Z.; Liu, B. Shape-tunable colloids from structured liquid droplet templates. Angew. Chem., Int. Ed. 2018, 57, 4940-4945.  doi: 10.1002/anie.201800587

    22. [22]

      Wang, W.; Zhang, M. J.; Chu, L. Y. Functional polymeric microparticles engineered from controllable microfluidic emulsions. Acc. Chem. Res. 2014, 47, 373-384.  doi: 10.1021/ar4001263

    23. [23]

      Zhu, J.; Hayward, R. C. Spontaneous generation of amphiphilic block copolymer micelles with multiple morphologies through interfacial instabilities. J. Am. Chem. Soc. 2008, 130, 7496-7502.  doi: 10.1021/ja801268e

    24. [24]

      Zhu, J.; Hayward, R. C. Hierarchically structured microparticles formed by interfacial instabilities of emulsion droplets containing amphiphilic block copolymers. Angew. Chem., Int. Ed. 2008, 47, 2113-2116.  doi: 10.1002/(ISSN)1521-3773

    25. [25]

      Shi, A. C.; Li, B. Self-assembly of diblock copolymers under confinement. Soft Matter 2013, 9, 1398-1413.  doi: 10.1039/C2SM27031E

    26. [26]

      Yan, N.; Zhu, Y.; Jiang, W. Recent progress in the self-assembly of block copolymers confined in emulsion droplets. Chem. Commun. 2018, 54, 13183-13195.  doi: 10.1039/C8CC05812A

    27. [27]

      Zhang, L. B.; Wang, K.; Zhu, J. T. Research progress on confined assembly of block copolymers in china. Acta Polymerica Sinica (in Chinese) 2017, 1261-1276.

    28. [28]

      Jeon, S. J.; Yi, G. R.; Yang, S. M. Cooperative assembly of block copolymers with deformable interfaces: toward nanostructured particles. Adv. Mater. 2008, 20, 4103-4108.  doi: 10.1002/adma.v20:21

    29. [29]

      Klinger, D.; Wang, C. X.; Connal, L. A.; Audus, D. J.; Jang, S. G.; Kraemer, S.; Killops, K. L.; Fredrickson, G. H.; Kramer, E. J.; Hawker, C. J. A facile synthesis of dynamic, shape-changing polymer particles. Angew. Chem. Int. Ed. 2014, 53, 7018-7022.  doi: 10.1002/anie.201400183

    30. [30]

      Ku, K. H.; Shin, J. M.; Kim, M. P.; Lee, C. H.; Seo, M. K.; Yi, G. R.; Jang, S. G.; Kim, B. J. Size-controlled nanoparticle-guided assembly of block copolymers for convex lens-shaped particles. J. Am. Chem. Soc. 2014, 136, 9982-9989.  doi: 10.1021/ja502075f

    31. [31]

      Jin, Z.; Fan, H. Self-assembly of nanostructured block copolymer nanoparticles. Soft Matter 2014, 10, 9212-9219.  doi: 10.1039/C4SM02064B

    32. [32]

      Chi, P.; Wang, Z.; Li, B.; Shi, A. C. Soft confinement-induced morphologies of diblock copolymers. Langmuir 2011, 27, 11683-11689.  doi: 10.1021/la202448c

    33. [33]

      Chen, P.; Liang, H.; Shi, A. C. Origin of microstructures from confined asymmetric diblock copolymers. Macromolecules 2007, 40, 7329-7335.  doi: 10.1021/ma0705164

    34. [34]

      Xiang, H. Q.; Shin, K.; Kim, T.; Moon, S. I.; McCarthy, T. J.; Russell, T. P. Block copolymers under cylindrical confinement. Macromolecules 2004, 37, 5660-5664.  doi: 10.1021/ma049299m

    35. [35]

      Yu, B.; Jin, Q.; Ding, D.; Li, B.; Shi, A. C. Confinement-induced morphologies of cylinder-forming asymmetric diblock copolymers. Macromolecules 2008, 41, 4042-4054.  doi: 10.1021/ma702430v

    36. [36]

      Yu, B.; Li, B.; Jin, Q.; Ding, D.; Shi, A. C. Self-assembly of symmetric diblock copolymers confined in spherical nanopores. Macromolecules 2007, 40, 9133-9142.  doi: 10.1021/ma071624t

    37. [37]

      Zhu, Y.; Jiang, W. Self-assembly of diblock copolymer mixtures in confined states: A Monte Carlo study. Macromolecules 2007, 40, 2872-2881.  doi: 10.1021/ma062022x

    38. [38]

      Yu, B.; Sun, P. C.; Chen, T. H.; Jin, Q. H.; Ding, D. T.; Li, B. H.; Shi, A. C. Confinement-induced novel morphologies of block copolymers. Phys. Rev. Lett. 2006, 96, 138306.  doi: 10.1103/PhysRevLett.96.138306

    39. [39]

      Shin, K.; Xiang, H. Q.; Moon, S. I.; Kim, T.; McCarthy, T. J.; Russell, T. P. Curving and frustrating flatland. Science 2004, 306, 76-76.  doi: 10.1126/science.1100090

    40. [40]

      Yabu, H.; Higuchi, T.; Jinnai, H. Frustrated phases: polymeric self-assemblies in a 3D confinement. Soft Matter 2014, 10, 2919-2931.  doi: 10.1039/c3sm52821a

    41. [41]

      Ku, K. H.; Shin, J. M.; Yun, H.; Yi, G. R.; Jang, S. G.; Kim, B. J. Multidimensional design of anisotropic polymer particles from solvent-evaporative emulsion. Adv. Funct. Mater. 2018, 28, 1802961.  doi: 10.1002/adfm.201802961

    42. [42]

      Cheng, J. Y.; Mayes, A. M.; Ross, C. A. Nanostructure engineering by templated self-assembly of block copolymers. Nat. Mater. 2004, 3, 823-828.  doi: 10.1038/nmat1211

    43. [43]

      Gentili, D.; Valle, F.; Albonetti, C.; Liscio, F.; Cavallini, M. Self-organization of functional materials in confinement. Acc. Chem. Res. 2014, 47, 2692-2699.  doi: 10.1021/ar500210d

    44. [44]

      Higuchi, T.; Tajima, A.; Motoyoshi, K.; Yabu, H.; Shimomura, M. Frustrated phases of block copolymers in nanoparticles. Angew. Chem., Int. Ed. 2008, 47, 8044-8046.  doi: 10.1002/anie.v47:42

    45. [45]

      Jiang, W. B.; Ji, Y. Y.; Lang, W. C.; Li, S. B.; Wang, X. H. Surface-induced morphologies of ABC star triblock copolymer in spherical cavities. Chinese J. Polym. Sci. 2015, 33, 1503-1515.  doi: 10.1007/s10118-015-1706-z

    46. [46]

      Qiu, W.-J.; Li, S. B.; Ji, Y. Y.; Zhang, L. X. Self-assembly of linear triblock copolymers under cylindrical nanopore confinements. Chinese J. Polym. Sci. 2013, 31, 122-138.  doi: 10.1007/s10118-013-1183-1

    47. [47]

      He, X. H.; Song, M.; Liang, H. J.; Pan, C. Y. Self-assembly of the symmetric diblock copolymer in a confined state: Monte Carlo simulation. J. Chem. Phys. 2001, 114, 10510-10513.  doi: 10.1063/1.1372189

    48. [48]

      Arsenault, A. C.; Rider, D. A.; Tétreault, N.; Chen, J. I. L.; Coombs, N.; Ozin, G. A.; Manners, I. Block copolymers under periodic, strong three-dimensional confinement. J. Am. Chem. Soc. 2005, 127, 9954-9955.  doi: 10.1021/ja052483i

    49. [49]

      Chen, P.; Liang, H.; Shi, A. C. Microstructures of a cylinder-forming diblock copolymer under spherical confinement. Macromolecules 2008, 41, 8938-8943.  doi: 10.1021/ma800443h

    50. [50]

      Mei, S. L.; Jin, Z. X. Mesoporous block-copolymer nanospheres prepared by selective swelling. Small 2013, 9, 322-329.  doi: 10.1002/smll.201201504

    51. [51]

      Higuchi, T.; Tajima, A.; Motoyoshi, K.; Yabu, H.; Shimomura, M. Suprapolymer structures from nanostructured polymer particles. Angew. Chem. Int. Ed. 2009, 48, 5125-5128.  doi: 10.1002/anie.v48:28

    52. [52]

      Yan, X.; Liu, G.; Li, Z. Preparation and phase segregation of block copolymer nanotube multiblocks. J. Am. Chem. Soc. 2004, 126, 10059-10066.  doi: 10.1021/ja0479890

    53. [53]

      Zhang, K.; Gao, L.; Chen, Y. Organic-inorganic hybrid materials by self-gelation of block copolymer assembly and nanoobjects with controlled shapes thereof. Macromolecules 2007, 40, 5916-5922.  doi: 10.1021/ma070780x

    54. [54]

      Wang, Y.; Li, F. B. An emerging pore-making strategy: Confined swelling-induced pore generation in block copolymer materials. Adv. Mater. 2011, 23, 2134-2148.  doi: 10.1002/adma.v23.19

    55. [55]

      Nandan, B.; Horechyy, A. Hairy core-shell polymer nano-objects from self-assembled block copolymer structures. ACS Appl. Mater. Interfaces 2015, 7, 12539-12558.  doi: 10.1021/am5075503

    56. [56]

      Walther, A.; Mueller, A. H. E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 2013, 113, 5194-5261.  doi: 10.1021/cr300089t

    57. [57]

      Walther, A.; Drechsler, M.; Rosenfeldt, S.; Harnau, L.; Ballauff, M.; Abetz, V.; Mueller, A. H. E. Self-assembly of Janus cylinders into hierarchical superstructures. J. Am. Chem. Soc. 2009, 131, 4720-4728.  doi: 10.1021/ja808614q

    58. [58]

      Chen, Y. Shaped hairy polymer nanoobjects. Macromolecules 2012, 45, 2619-2631.  doi: 10.1021/ma201495m

    59. [59]

      Liu, S. Q.; Deng, R. H.; Li, W. K.; Zhu, J. T. Polymer microparticles with controllable surface textures generated through interfacial instabilities of emulsion droplets. Adv. Funct. Mater. 2012, 22, 1692-1697.  doi: 10.1002/adfm.v22.8

    60. [60]

      Jang, S. G.; Audus, D. J.; Klinger, D.; Krogstad, D. V.; Kim, B. J.; Cameron, A.; Kim, S.-W.; Delaney, K. T.; Hur, S. M.; Killops, K. L.; Fredrickson, G. H.; Kramer, E. J.; Hawker, C. J. Striped, ellipsoidal particles by controlled assembly of diblock copolymers. J. Am. Chem. Soc. 2013, 135, 6649-6657.  doi: 10.1021/ja4019447

    61. [61]

      Deng, R.; Liang, F.; Li, W.; Yang, Z.; Zhu, J. Reversible transformation of nanostructured polymer particles. Macromolecules 2013, 46, 7012-7017.  doi: 10.1021/ma401398h

    62. [62]

      Deng, R.; Liu, S.; Liang, F.; Wang, K.; Zhu, J.; Yang, Z. Polymeric Janus particles with hierarchical structures. Macromolecules 2014, 47, 3701-3707.  doi: 10.1021/ma500331w

    63. [63]

      Xu, J.; Wang, K.; Li, J.; Zhou, H.; Xie, X.; Zhu, J. ABC triblock copolymer particles with tunable shape and internal structure through 3D confined assembly. Macromolecules 2015, 48, 2628-2636.  doi: 10.1021/acs.macromol.5b00335

    64. [64]

      Yan, N.; Liu, H.; Zhu, Y.; Jiang, W.; Dong, Z. Entropy-driven hierarchical nanostructures from cooperative self-assembly of gold nanoparticles/block copolymers under three-dimensional confinement. Macromolecules 2015, 48, 5980-5987.  doi: 10.1021/acs.macromol.5b01219

    65. [65]

      Yan, N.; Zhang, Y.; He, Y.; Zhu, Y.; Jiang, W. Controllable location of inorganic nanoparticles on block copolymer self-assembled scaffolds by tailoring the entropy and enthalpy contributions. Macromolecules 2017, 50, 6771-6778.  doi: 10.1021/acs.macromol.7b01076

    66. [66]

      Yan, N.; Zhu, Y.; Jiang, W. Self-assembly of AB diblock copolymer confined in a soft nano-droplet: a combination study by Monte Carlo simulation and experiment. J. Phys. Chem. B 2016, 120, 12023-12029.  doi: 10.1021/acs.jpcb.6b10170

    67. [67]

      Ku, K. H.; Kim, Y.; Yi, G. R.; Jung, Y. S.; Kim, B. J. Soft patchy particles of block copolymers from interface-engineered emulsions. ACS Nano 2015, 9, 11333-11341.  doi: 10.1021/acsnano.5b05058

    68. [68]

      Deng, R.; Li, H.; Liang, F.; Zhu, J.; Li, B.; Xie, X.; Yang, Z. Soft colloidal molecules with tunable geometry by 3D confined assembly of block copolymers. Macromolecules 2015, 48, 5855-5860.  doi: 10.1021/acs.macromol.5b01261

    69. [69]

      Deng, R.; Li, H.; Zhu, J.; Li, B.; Liang, F.; Jia, F.; Qu, X.; Yang, Z. Janus nanoparticles of block copolymers by emulsion solvent evaporation induced assembly. Macromolecules 2016, 49, 1362-1368.  doi: 10.1021/acs.macromol.5b02507

    70. [70]

      Jeon, S. J.; Yi, G. R.; Koo, C. M.; Yang, S. M. Nanostructures inside colloidal particles of block copolymer/homopolymer blends. Macromolecules 2007, 40, 8430-8439.  doi: 10.1021/ma0712302

    71. [71]

      Rider, D. A.; Chen, J. I. L.; Eloi, J. C.; Arsenault, A. C.; Russell, T. P.; Ozin, G. A.; Manners, I., Controlling the morphologies of organometallic block copolymers in the 3-dimensional spatial confinement of colloidal and inverse colloidal crystals. Macromolecules 2008, 41, 2250-2259.  doi: 10.1021/ma7020248

    72. [72]

      Xu, J.; Yang, Y.; Wang, K.; Wu, Y.; Zhu, J. Fabrication of convex lens-shaped polymer particles by tuning the interfacial interaction. Mater. Chem. Front. 2017, 1, 507-511.  doi: 10.1039/C6QM00072J

    73. [73]

      Ku, K. H.; Yang, H.; Shin, J. M.; Kim, B. J. Aspect ratio effect of nanorod surfactants on the shape and internal morphology of block copolymer particles. J. Polym. Sci., Part A: Polym. Chem. 2015, 53, 188-192.  doi: 10.1002/pola.27333

    74. [74]

      Yang, H.; Ku, K. H.; Shin, J. M.; Lee, J.; Park, C. H.; Cho, H. H.; Jang, S. G.; Kim, B. J. Engineering the shape of block copolymer particles by surface-modulated graphene quantum dots. Chem. Mater. 2016, 28, 830-837.  doi: 10.1021/acs.chemmater.5b04222

    75. [75]

      Higuchi, T.; Motoyoshi, K.; Sugimori, H.; Jinnai, H.; Yabu, H.; Shimomura, M. Three-dimensional observation of confined phase-separated structures in block copolymer nanoparticles. Soft Matter 2012, 8, 3791-3797.  doi: 10.1039/c2sm07139h

    76. [76]

      Jo, I. S.; Lee, S.; Zhu, J.; Shim, T. S.; Yi, G. R. Soft patchy micelles. Curr. Opin. Colloid Interface Sci. 2017, 30, 97-105.  doi: 10.1016/j.cocis.2017.06.005

    77. [77]

      Tung, S. H.; Kalarickal, N. C.; Mays, J. W.; Xu, T. Hierarchical assemblies of block-copolymer-based supramolecules in thin films. Macromolecules 2008, 41, 6453-6462.  doi: 10.1021/ma800726r

    78. [78]

      Ruokolainen, J.; Makinen, R.; Torkkeli, M.; Makela, T.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Switching supramolecular polymeric materials with multiple length scales. Science 1998, 280, 557-560.  doi: 10.1126/science.280.5363.557

    79. [79]

      Li, W.; Liu, S.; Deng, R.; Wang, J.; Nie, Z.; Zhu, J. A simple route to improve inorganic nanoparticles loading efficiency in block copolymer micelles. Macromolecules 2013, 46, 2282-2291.  doi: 10.1021/ma302515p

    80. [80]

      Li, W.; Liu, S.; Deng, R.; Zhu, J. Encapsulation of nanoparticles in block copolymer micellar aggregates by directed supramolecular assembly. Angew. Chem. Int. Ed. 2011, 50, 5865-5868.  doi: 10.1002/anie.v50.26

    81. [81]

      Li, W.; Zhang, P.; Dai, M.; He, J.; Babu, T.; Xu, Y. L.; Deng, R.; Liang, R.; Lu, M. H.; Nie, Z. Ordering of gold nanorods in confined spaces by directed assembly. Macromolecules 2013, 46, 2241-2248.  doi: 10.1021/ma400115z

    82. [82]

      Zhao, Y.; Thorkelsson, K.; Mastroianni, A. J.; Schilling, T.; Luther, J. M.; Rancatore, B. J.; Matsunaga, K.; Jinnai, H.; Wu, Y.; Poulsen, D.; Frechet, J. M. J.; Alivisatos, A. P.; Xu, T. Small-molecule-directed nanoparticle assembly towards stimuli-responsive nanocomposites. Nat. Mater. 2009, 8, 979-985.  doi: 10.1038/nmat2565

    83. [83]

      Deng, R.; Liang, F.; Li, W.; Liu, S.; Liang, R.; Cai, M.; Yang, Z.; Zhu, J. Shaping functional nano-objects by 3D confined supramolecular assembly. Small 2013, 9, 4099-4103.  doi: 10.1002/smll.v9.24

    84. [84]

      Deng, R.; Liu, S.; Li, J.; Liao, Y.; Tao, J.; Zhu, J. Mesoporous block copolymer nanoparticles with tailored structures by hydrogen-bonding-assisted self-assembly. Adv. Mater. 2012, 24, 1889-1893.  doi: 10.1002/adma.v24.14

    85. [85]

      Xu, J.; Li, J.; Yang, Y.; Wang, K.; Xu, N.; Li, J.; Liang, R.; Shen, L.; Xie, X.; Tao, J.; Zhu, J. Block copolymer capsules with structure-dependent release behavior. Angew. Chem. Int. Ed. 2016, 55, 14633-14637.  doi: 10.1002/anie.201607982

    86. [86]

      Xu, J.; Yang, Y.; Wang, K.; Li, J.; Zhou, H.; Xie, X.; Zhu, J. Additives induced structural transformation of ABC triblock copolymer particles. Langmuir 2015, 31, 10975-10982.  doi: 10.1021/acs.langmuir.5b02843

    87. [87]

      Wu, Y.; Tan, H.; Yang, Y.; Li, Y.; Xu, J.; Zhang, L.; Zhu, J. Regulating block copolymer assembly structures in emulsion droplets through metal ion coordination. Langmuir 2018, 34, 11495-11502.  doi: 10.1021/acs.langmuir.8b02135

    88. [88]

      Wu, Y.; Wang, K.; Tan, H.; Xu, J.; Zhu, J. Emulsion solvent evaporation-induced self-assembly of block copolymers containing pH-sensitive block. Langmuir 2017, 33, 9889-9896.  doi: 10.1021/acs.langmuir.7b02330

    89. [89]

      Karimi, M.; Ghasemi, A.; Zangabad, P. S.; Rahighi, R.; Basri, S. M. M.; Mirshekari, H.; Amiri, M.; Pishabad, Z. S.; Aslani, A.; Bozorgomid, M.; Ghosh, D.; Beyzavi, A.; Vaseghi, A.; Aref, A. R.; Haghani, L.; Bahrami, S.; Hamblin, M. R. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45, 1457-1501.  doi: 10.1039/C5CS00798D

    90. [90]

      Meng, Y.; Gu, D.; Zhang, F. Q.; Shi, Y. F.; Yang, H. F.; Li, Z.; Yu, C. Z.; Tu, B.; Zhao, D. Y., Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem. Int. Ed. 2005, 44, 7053-7059.  doi: 10.1002/(ISSN)1521-3773

    91. [91]

      Wan, Y.; Zhao, D., On the controllable soft-templating approach to mesoporous silicates. Chem. Rev. 2007, 107, 2821-2860.  doi: 10.1021/cr068020s

    92. [92]

      Deng, Y.; Wei, J.; Sun, Z.; Zhao, D. Large-pore ordered mesoporous materials templated from non-Pluronic amphiphilic block copolymers. Chem. Soc. Rev. 2013, 42, 4054-4070.  doi: 10.1039/C2CS35426H

    93. [93]

      Wu, Y. Y.; Cheng, G. S.; Katsov, K.; Sides, S. W.; Wang, J. F.; Tang, J.; Fredrickson, G. H.; Moskovits, M.; Stucky, G. D. Composite mesostructures by nano-confinement. Nat. Mater. 2004, 3, 816-822.  doi: 10.1038/nmat1230

    94. [94]

      He, Y.; Zhang, Y.; Yan, N.; Zhu, Y.; Jiang, W.; Shi, D., Self-assembly of block copolymers into sieve-like particles with arrayed switchable channels and as scaffolds to guide the arrangement of gold nanoparticles. Nanoscale 2017, 9, 15056-15061.  doi: 10.1039/C7NR04923D

    95. [95]

      Deng, R.; Liang, F.; Zhou, P.; Zhang, C.; Qu, X.; Wang, Q.; Li, J.; Zhu, J.; Yang, Z. Janus nanodisc of diblock copolymers. Adv. Mater. 2014, 26, 4469-4472.  doi: 10.1002/adma.v26.26

    96. [96]

      Deng, R.; Liang, F.; Qu, X.; Wang, Q.; Zhu, J.; Yang, Z. Diblock copolymer based Janus nanoparticles. Macromolecules 2015, 48, 750-755.  doi: 10.1021/ma502339s

    97. [97]

      Yang, Y.; Kim, H.; Xu, J.; Hwang, M. S.; Tian, D.; Wang, K.; Zhang, L.; Liao, Y.; Park, H. G.; Yi, G. R.; Xie, X.; Zhu, J. Responsive block copolymer photonic microspheres. Adv. Mater. 2018, 30, 1707344.  doi: 10.1002/adma.v30.21

    98. [98]

      Pisani, E.; Tsapis, N.; Galaz, B.; Santin, M.; Berti, R.; Taulier, N.; Kurtisovski, E.; Lucidarme, O.; Ourevitch, M.; Doan, B. T.; Beloeil, J. C.; Gillet, B.; Urbach, W.; Bridal, S. L.; Fattal, E. Perfluorooctyl bromide polymeric capsules as dual contrast agents for ultrasonography and magnetic resonance imaging. Adv. Funct. Mater. 2008, 18, 2963-2971.  doi: 10.1002/adfm.v18:19

  • 加载中
    1. [1]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    2. [2]

      Conghui WangLei XuZhenhua JiaTeck-Peng Loh . Recent applications of macrocycles in supramolecular catalysis. Chinese Chemical Letters, 2024, 35(4): 109075-. doi: 10.1016/j.cclet.2023.109075

    3. [3]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    4. [4]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    5. [5]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    6. [6]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    7. [7]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    8. [8]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    9. [9]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    10. [10]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    11. [11]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    12. [12]

      Min HuangRu ChengShuai WenLiangtong LiJie GaoXiaohui ZhaoChunmei LiHongyan ZouJian Wang . Ultrasensitive detection of microRNA-21 in human serum based on the confinement effect enhanced chemical etching of gold nanorods. Chinese Chemical Letters, 2024, 35(9): 109379-. doi: 10.1016/j.cclet.2023.109379

    13. [13]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    14. [14]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    15. [15]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    16. [16]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    17. [17]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    18. [18]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    19. [19]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    20. [20]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

Metrics
  • PDF Downloads(0)
  • Abstract views(864)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return