Citation: Shu-Jian Yuan, Wei-Hao Meng, Ai-Hua Du, Xin-Yu Cao, Yong Zhao, Jing-Xia Wang, Lei Jiang. Direct-writing Structure Color Patterns on the Electrospun Colloidal Fibers toward Wearable Materials[J]. Chinese Journal of Polymer Science, ;2019, 37(8): 729-736. doi: 10.1007/s10118-019-2286-0 shu

Direct-writing Structure Color Patterns on the Electrospun Colloidal Fibers toward Wearable Materials

  • This study presents a direct-writing structure color patterns on electrospun colloidal fibers by inkjet printing. The colloidal fiber was obtained by electrospinning the aqueous mixture of colloidal particles of poly(styrene-methyl methacrylate-acrylic acid) and poly(vinyl alcohol). The pattern was obtained by directly inkjet printing water onto the electrospun colloidal fiber. The pattern formation was attributed to the morphological transition of the colloidal fiber from the fiber aggregation to latex aggregation and the corresponding color change due to the dissolution of poly(vinyl alcohol) by water. Interestingly, a clear and clean image was successfully obtained on the ethanol-treated colloidal fibers film in comparison to a confused and blur image onto the freshly-made film. It is because the treatment process can compact the fiber structure and lower the spreading/wetting behavior of ink on the fiber structure, contributing to the formation of high-quality pattern. Various letters or quick response code were flexibly designed and printed on to colloidal fibers. Furthermore, the pattern can be easily transferred onto flexible substrate, i.e., a flexible printed bracelet. This work will be of great significance for the development of novel wearable functional materials/devices based on electrospun colloidal fibers.
  • 加载中
    1. [1]

      Shiue, R. J.; Gao, Y. D.; Tan, C.; Peng, C.; Zheng, J. B.; Efetov, D. K.; Kim, Y. D.; Hone, J.; Englund, D. Thermal radiation control from hot graphene electrons coupled to a photonic crystal nanocavity. Nat. Commun. 2019, 10, 109.  doi: 10.1038/s41467-018-08047-3

    2. [2]

      Fu, F. F.; Shang, L. R.; Chen, Z. Y.; Yu, Y. R.; Zhao, Y. J. Bioinspired living structural color hydrogels. Sci. Robot. 2018, 3, eaar8580.  doi: 10.1126/scirobotics.aar8580

    3. [3]

      Zhang, D. J.; Liu, J.; Chen, B.; Zhao, Y.; Wang, J. X.; Ikeda, T.; and Jiang, L. A hydrophilic/hydrophobic Janus inverse-opal actuator via gradient infiltration. ACS Nano 2018, 12, 12149-12158.  doi: 10.1021/acsnano.8b05758

    4. [4]

      Wang, H.; Zhao, Z.; Liu, Y. X.; Shao, C. M.; Bian, F.; Zhao, Y. J. Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Sci. Adv. 2018, 4, eaat2816.  doi: 10.1126/sciadv.aat2816

    5. [5]

      Xu, Y. S.; Wang, H.; Luan, C. X.; Fu, F. F.; Chen, B. A.; Liu, H.; Zhao, Y. J. Porous hydrogel encapsulated photonic barcodes for multiplex microRNA quantification. Adv. Funct. Mater. 2018, 28, 1704458.  doi: 10.1002/adfm.v28.1

    6. [6]

      Zhu, B. T.; Fu, Q. Q.; Chen, K.; Ge, J. P. Liquid Photonic Crystals for Mesopore Detection. Angew. Chem. Int. Ed. 2018, 57, 252-256.  doi: 10.1002/anie.201710456

    7. [7]

      Zhong, K.; Li, J. Q.; Liu, L. W.; Cleuvenbergen, S. V.; Song, K.; Clays, K. Instantaneous, simple, and reversible revealing of invisible patterns encrypted in robust hollow sphere colloidal photonic Crystals. Adv. Mater. 2018, 30, 1707246.  doi: 10.1002/adma.v30.25

    8. [8]

      Du, X.; Wang, M.; Welle, A.; Sadabad, F. B.; Wang, Y. L.; Levkin, P. A.; Gu, Z. Z. Reparable superhydrophobic surface with hidden reactivity, its photofunctionalization and photopatterning. Adv. Funct. Mater. 2018, 28, 1803765.  doi: 10.1002/adfm.v28.41

    9. [9]

      Wu, L. L.; Wang, X.; Wang, G.; Chen, G. In situ X-ray scattering observation of two dimensional interfacial colloidal crystallization. Nat. Commun. 2018, 9, 1335.  doi: 10.1038/s41467-018-03767-y

    10. [10]

      Guo, D.; Zheng, X.; Wang, X. H.; Li, H. Z.; Li, K. X.; Li, Z.; Song, Y. L. Formation of multicomponent size‐sorted assembly patterns by tunable templated dewetting. Angew. Chem. Int. Ed. 2018, 57, 16126-1613.  doi: 10.1002/anie.201810728

    11. [11]

      Zhang, B.; Meng, F. S.; Feng, J. G.; Wang, J. X.; Wu, Y. C; and Jiang, L. Manipulation of colloidal particles in three dimensions via microfluid engineering. Adv. Mater. 2018, 30, 1707291.

    12. [12]

      Liu, X. J.; Gu, H. C.; Wang, M.; Du, X.; Gao, B. B.; Elbaz, A.; Sun, L. D.; Liao, J. L.; Xiao, P. F.; Gu, Z. Z. 3D printing of bioinspired liquid superrepellent structures. Adv. Mater. 2018, 3, 1800103.

    13. [13]

      Zhang, J.; Zhu, Z. J.; Yu, Z. Y.; Ling, L. T.; Wang, C. F.; Chen, S. Large-scale colloidal films with robust structural colors. Mater. Horiz. 2019, 6, 90-96.  doi: 10.1039/C8MH00248G

    14. [14]

      Hou, J.; Li, M. Z.; Song, Y. L. Patterned colloidal photonic crystals. Angew. Chem. Int. Ed. 2017, 130: 2544

    15. [15]

      Li, Y. N.; Zhou, X.; Yang, Q.; Li, Y. D.; Li, W. B.; Li, H. Z.; Chen, S. R.; Li, M. Z.; Song, Y. L. Patterned photonic crystals for hiding information. J. Mater. Chem. C 2017, 5, 4621.  doi: 10.1039/C7TC01149K

    16. [16]

      Zhou, J. M.; Han, P.; Liu, M. J.; Zhou, H. Y.; Zhang, Y. X.; Jiang, J. K.; Liu, P.; Wei, Y.; Song, Y. L.; Yao, X. Self-healable organogel nanocomposite with angle-independent structural colors., Angew. Chem. Int. Ed. 2017, 129, 10598.  doi: 10.1002/ange.v129.35

    17. [17]

      Boto, E.; Holmes, N.; Roberts, J. G.; Shah, V.; Meyer, S. S.; Muñoz, L. D.; Mullinger, K. J.; Tierney, T. M.; Bestmann, S.; Barnes, G. R.; Bowtell, R.; Brookes, M. J. Moving magnetoencephalography towards real-world applications with a wearable system. Nature 2018, 555, 657–661.  doi: 10.1038/nature26147

    18. [18]

      Markvicka, E. J.; Bartlett, M. D.; Huang, X. N.; and Majidi, C. An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics. Nat. Mater. 2018, 17, 618–624.  doi: 10.1038/s41563-018-0084-7

    19. [19]

      Qian, X.; Cai, Z. R.; Su, M.; Li, F. Y.; Fang, W.; Li, Y. D.; Zhou, X.; Li, Q. Y.; Feng, X. Q.; Li, W. B.; Hu, X. T.; Wang, X. D.; Pan, C. F.; Song, Y. L. Printable skin-Driven mechanoluminescence devices via nanodoped matrix modification. Adv. Mater. 2018, 30, 1800291.  doi: 10.1002/adma.v30.25

    20. [20]

      Chortos, A.; Liu, J.; Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 2016, 15, 937.  doi: 10.1038/nmat4671

    21. [21]

      Gao, B. B.; Elbaz, A.; He, Z. Z.; Xie, Z. Y.; Xu, H.; Liu, S. Q.; Su, E.; Liu, H.; Gu, Z. Z. Bioinspired kirigami fish-based highly stretched wearable biosensor for human biochemical-Physiological hybrid monitoring. Adv. Mater. Technol. 2018, 3, 1700308.  doi: 10.1002/admt.v3.4

    22. [22]

      He, Z. Z.; Elbaz, A.; Gao, B. B.; Zhang, J. N.; Su, E.; Gu, Z. Z. Wearable biosensors: Disposable morpho menelaus based flexible microfluidic and electronic sensor for the diagnosis of neurodegenerative disease. Adv. Healthcare Mater. 2018, 7, 1701306.  doi: 10.1002/adhm.v7.5

    23. [23]

      Zhang, Z. T.; Cui, L. Y.; Shi, X.; Tian, X. C.; Wang, D. P.; Gu, C. N.; Chen, E.; Cheng, X. L.; Xu, Y. F.; Hu, Y. J.; Zhang, J. Y.; Zhou, L.; Fong, H. H.; Ma, P. B.; Jiang, G. M.; Sun, X. M.; Zhang, B.; Peng, H. S. Textile display for electronic and brain-Interfaced communications. Adv. Mater. 2018, 30, 1800323.  doi: 10.1002/adma.201800323

    24. [24]

      Yuan, W.; Zhou, N.; Shi, L.; Zhang, K. Q. Structural coloration of colloidal fiber by photonic band gap and resonant Mie scattering. ACS Appl. Mater. Interfaces 2015, 7, 14064-14071.  doi: 10.1021/acsami.5b03289

    25. [25]

      Yuan, W.; Zhang, K. Q. Structural evolution of electrospun composite fibers from the blend of polyvinyl alcohol and polymer nanoparticles. Langmuir 2012, 28, 15418-15424.  doi: 10.1021/la303312q

    26. [26]

      Lim, J. M.; Moon, J. H.; Yi, G. R.; Heo, C. J.; Yang, S. M. Fabrication of one-dimensional colloidal assemblies from electrospun nanofibers. Langmuir 2006, 22, 3445-3449.  doi: 10.1021/la053057d

    27. [27]

      Lim, J. M.; Yi, G. R.; Moon, J. H.; Heo, C. J.; Yang, S. M. Superhydrophobic films of electrospun fibers with multiple-scale surface morphology. Langmuir 2007, 23, 7981-7989.  doi: 10.1021/la700392w

    28. [28]

      Moon, J. H.; Kim, S.; Yi, G. R.; Lee, Y. H.; Yang, S. M. Fabrication of ordered macroporous cylinders by colloidal templating in microcapillaries. Langmuir 2004, 20, 2033-2035.  doi: 10.1021/la0358015

    29. [29]

      Hou, L. L.; Wang, N.; Wu, J.; Cui, Z. M.; Jiang, L.; Zhao, Y. Bioinspired superwettability electrospun micro/nanofibers and their applications. Adv. Funct. Mater. 2018, 28, 1801114.  doi: 10.1002/adfm.v28.49

    30. [30]

      Zheng, S.; Du, M.; Miao, W. N.; Wang, D. Y.; Zhu, Z. P.; Tian, Y.; and Jiang, L. 2D prior spreading inspired from Chinese Xuan papers. Adv. Funct. Mater. 2018, 1800832.

    31. [31]

      Zhou, N.; Zhang, A.; Shi, L.; Zhang, K. Q. Fabrication of structurally-colored fibers with axial core-shell structure via electrophoretic deposition and their optical properties. ACS Macro Lett. 2013, 2, 116-120.  doi: 10.1021/mz300517n

    32. [32]

      Huang, J. Y.; Li, S. H.; Ge, M. Z.; Wang, L. N.; Xing, T. L.; Chen, G. Q.; Liu, X. F.; Al-Deyab, S. S.; Zhang, K. Q.; Chen, T.; Lai, Y. K. Robust superhydrophobic TiO2@fabrics for UV shielding, self-cleaning and oil-water separation. J. Mater. Chem. A 2015, 3, 2825-2832.  doi: 10.1039/C4TA05332J

    33. [33]

      Ling, Z. W.; Liu, K.; Zou, Q.; Li, Q.; Zhang, K. Q.; Cui, Z.; Yuan, W.; Liu, Y. Q. Continuous and rapid fabrication of photochromic fibers by facilely coating tungsten oxide/polyvinyl alcohol composites. RSC Adv. 2018, 8, 28581-28587.  doi: 10.1039/C8RA05170D

    34. [34]

      Zeng, Q.; Ding, C.; Li, Q. S.; Yuan, W.; Peng, Y.; Hu, J. C.; Zhang, K. Q. Rapid fabrication of robust, washable, self-healing superhydrophobic fabrics with non-iridescent structural color by facile spray coating. RSC Adv. 2017, 7, 8443-8452.  doi: 10.1039/C6RA26526J

    35. [35]

      Liu, Z. F.; Zhang, Q. H.; Wang, H. Z.; Li, Y. G. Structurally colored carbon fibers with controlled optical properties prepared by a fast and continuous electrophoretic deposition method. Nanoscale 2013, 5, 6917-6922.  doi: 10.1039/c3nr01766d

    36. [36]

      Sun, X. M.; Zhang, J.; Lu, X.; Fang, X.; Peng, H. S. Mechanochromic photonic-crystal fibers based on continuous sheets of aligned carbon nanotubes. Angew. Chem. Int. Ed. 2015, 54, 3630 –3634.  doi: 10.1002/anie.201412475

    37. [37]

      Zhang, J.; He, S. S.; Liu, L. M.; Guan, G.; Lu, Z. X.; Sun, X. M.; Peng, H. S. The continuous fabrication of mechanochromic fibers. J. Mater. Chem. C 2016, 4, 2127-2133.  doi: 10.1039/C5TC04073F

    38. [38]

      Li, K. R.; Zhang, Q. H.; Wang, H. Z.; Li, Y. G. Red, green, blue (RGB) electrochromic fibers for the new smart color change fabrics. ACS Appl. Mater. Interfaces 2014, 6, 13043-13050.  doi: 10.1021/am502929p

    39. [39]

      Liu, Z. F.; Zhang, Q. H.; Wang, H. Z.; Li, Y. G. Magnetic field induced formation of visually structural colored fiber in micro-space. J. Colloid. Inter. Sci. 2013, 406, 18-23.  doi: 10.1016/j.jcis.2013.05.057

    40. [40]

      Liu, Z. F.; Zhang, Q. H.; Wang, H. Z.; Li, Y. G. Structural colored fiber fabricated by a facile colloid self-assembly method in micro-space. Chem. Commun. 2011, 47: 12801-12803.  doi: 10.1039/c1cc15588a

    41. [41]

      Kolle, M.; Lethbridge, A.; Kreysing, M.; Baumberg, J. J.; Aizenberg, J.; Vukusic, P. Bio-inspired band-gap tunable elastic optical multilayer fibers. Adv. Mater. 2013, 25, 2239-2245.  doi: 10.1002/adma.201203529

    42. [42]

      Finlayson, C. E.; Goddard, C.; Papachristodoulou, E.; Snoswell, D. R. E.; Kontogeorgos, A.; Spahn, P.; Hellmann, G. P.; Hess, O.; Baumberg, J. J. Ordering in stretch-tunable polymeric opal fibers. Opt. Express 2011, 19, 3144-3154.  doi: 10.1364/OE.19.003144

    43. [43]

      Wunner, F. M.; Wille, M.-L.; Noonan, T. G.; Bas, O. D.; De-Juan-Pardo, P. D.; and Hutmacher, D. W. Melt electrospinning writing of highly ordered large volume scaffold architectures. Adv. Mater. 2018, 30, 1706570.  doi: 10.1002/adma.v30.20

    44. [44]

      Chen H. L.; Malheiro, A. de B. F. B.; Blitterswijk, van C.; Mota, C.; Wieringa, P. A.; Moroni, L. Direct writing electrospinning of scaffolds with multidimensional fiber architecture for hierarchical tissue engineering. ACS Appl. Mater. Interfaces 2017, 9, 38187−38200.  doi: 10.1021/acsami.7b07151

    45. [45]

      Zhao, Z.; Wang, H.; Shang, L. R.; Yu, Y. R.; Fu, F. F.; Zhao, Y. J.; Gu, Z. Z. Bioinspired heterogeneous structural color stripes from capillaries. Adv. Mater. 2017, 29, 1704569.  doi: 10.1002/adma.v29.46

    46. [46]

      Li, Q. S.; Zhang, Y. F.; Shi, L.; Qiu, H. H.; Zhang, S. M.; Q,i N.; Hu, J. C.; Yuan, W.; Zhang, X. H.; Zhang, K. Q., Additive mixing and conformal coating of noniridescent structural colors with robust mechanical properties fabricated by atomization deposition. ACS Nano 2018, 12, 3095-3102.  doi: 10.1021/acsnano.7b08259

    47. [47]

      Dong, B. Q.; Liu, X. H.; Zhan, T. R.; Jiang, L. P.; Yin, H. W.; Liu, F.; Zi, J. Structural coloration and photonic pseudogap in natural random close-packing photonic structures. Opt. Express 2010, 18,14430-14438  doi: 10.1364/OE.18.014430

    48. [48]

      Saranathan, V.; Forster, J. D.; Noh, H.; Liew, S. F.; Mochrie, S. G. J.; Cao, H.; Dufresne, E. R.; Prum, R. O. Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species. J. R. Soc. Interfaces 2012, 9, 2563-2580.  doi: 10.1098/rsif.2012.0191

    49. [49]

      Adrian, D.; Thomas, W.; In, E. Y. A. Light Scattering by Systems of Particles, Springer: Berlin 2006, 2, pp. 99−102

    50. [50]

      Sapienza, R.; García, P. D.; Bertolotti, J.; Martín, M. D.; Blanco, Á.; Viña, L.; López, C.; Wiersma, D. S. Observation of resonant behavior in the energy velocity of diffused light. Phys. Rev. Lett. 2007, 99, 233902.  doi: 10.1103/PhysRevLett.99.233902

    51. [51]

      Garcı′a, P. D.; Sapienza, R.; and Pez, C. L. Photonic glasses: A step beyond white paint. Adv. Mater. 2010, 22,12-19.  doi: 10.1002/adma.v22:1

    52. [52]

      Takeoka, Y.; Yoshioka, S.; Takano, A.; Arai, S.; Nueangnoraj, K.; Nishihara, H.; Teshima, M.; Ohtsuka, Y.; Seki, T. Production of colored pigments with amorphous arrays of black and white colloidal particles. Angew. Chem. Int. Ed. 2013, 125, 7402 –7406.  doi: 10.1002/ange.201301321

    53. [53]

      Zhang, Y. F.; Dong, B. Q.; Chen, A.; Liu, X. H.; Shi, L.; Zi, J. Using cuttlefish ink as an additive to produce non-iridescent structural colors of high color visibility. Adv. Mater. 2015, 27, 4719-4724.  doi: 10.1002/adma.v27.32

    54. [54]

      Kim, Y. H.; Heo, J. S.; Kim, T. H.; Park, S.; Yoon, M. H.; Kim, J.; Oh, M. S.; Yi, G. R.; Noh, Y. Y.; Park, S. K. Flexible metal-oxide devices made by room-temperature photochemical activation of sol-gel films. Nature 2012, 489: 128-132.  doi: 10.1038/nature11434

    55. [55]

      Wang, J. X.; Wen, Y. Q.; Ge, H. l.; Sun, Z. W.; Zheng, Y. M.; Song, Y. L.; Jiang, L. Simple fabrication of full color colloidal crystal films with tough mechanical strength. Macromol. Chem. Phys. 2006, 207: 596-604.  doi: 10.1002/(ISSN)1521-3935

  • 加载中
    1. [1]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    2. [2]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    3. [3]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    4. [4]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    5. [5]

      Jie RenHao ZongYaqun HanTianyi LiuShufen ZhangQiang XuSuli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350

    6. [6]

      Jie WuXiaoqing YuGuoxing LiSu Chen . Engineering particles towards 3D supraballs-based passive cooling via grafting CDs onto colloidal photonic crystals. Chinese Chemical Letters, 2024, 35(4): 109234-. doi: 10.1016/j.cclet.2023.109234

    7. [7]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    8. [8]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    9. [9]

      Yuhang Li Yang Ling Yanhang Ma . Application of three-dimensional electron diffraction in structure determination of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100237-100237. doi: 10.1016/j.cjsc.2024.100237

    10. [10]

      Hai-Ling Wang Zhong-Hong Zhu Hua-Hong Zou . Structure and assembly mechanism of high-nuclear lanthanide-oxo clusters. Chinese Journal of Structural Chemistry, 2024, 43(9): 100372-100372. doi: 10.1016/j.cjsc.2024.100372

    11. [11]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    12. [12]

      Run-Han LiTian-Yi DangWei GuanJiang LiuYa-Qian LanZhong-Min Su . Evolution exploration and structure prediction of Keggin-type group IVB metal-oxo clusters. Chinese Chemical Letters, 2024, 35(5): 108805-. doi: 10.1016/j.cclet.2023.108805

    13. [13]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    14. [14]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    15. [15]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    16. [16]

      Tiantian LiRuochen JinBin WuDongming LanYunjian MaYonghua Wang . A novel insight of enhancing the hydrogen peroxide tolerance of unspecific peroxygenase from Daldinia caldariorum based on structure. Chinese Chemical Letters, 2024, 35(4): 108701-. doi: 10.1016/j.cclet.2023.108701

    17. [17]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    18. [18]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2023.100416

    19. [19]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    20. [20]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

Metrics
  • PDF Downloads(0)
  • Abstract views(690)
  • HTML views(9)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return