Citation: Lei Shi, Ruo-Yu Zhang, Wu-Bin Ying, Han Hu, Yu-Bin Wang, Ya-Qian Guo, Wen-Qin Wang, Zhao-Bin Tang, Jin Zhu. Polyether-polyester and HMDI Based Polyurethanes: Effect of PLLA Content on Structure and Property[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1152-1161. doi: 10.1007/s10118-019-2283-3 shu

Polyether-polyester and HMDI Based Polyurethanes: Effect of PLLA Content on Structure and Property

  • Thermoplastic poly(ether-ester-urethane)s were synthesized from poly(L-lactide) diols (PLLA diols), polytetrahydrofuran diol (PTMG diols), 4,4′-dicyclohexylmethane diisocyanate (HMDI), and 1,4-butanediol (BDO) by a two-step reaction, and the morphology and property of the resultant TPU could be adjusted by varying the PLLA contents. The soft segment was composed of PLLA and PTMG diols. By controlling the percentage of PLLA in the soft segment, the glass transition temperature and mechanical properties of the polyurethanes could be regulated. Based on the FTIR spectrum, we found that two kinds of hydrogen bonding existed individually in soft matrix and hard domain. The hydrogen bonding in soft matrix was unstable, which could be destroyed during elongation. With in situ stretching WAXS and SAXS experiments, we found that the PLLA crystal was destroyed and the PLLA domain oriented along the stretch direction. Finally, we proposed a schematic model to illustrate the microstructures of these elastomers before and after stretch.
  • 加载中
    1. [1]

      Sheth, J. P.; Xu, J. N.; Wilkes, G. L. Solid state structure-property behavior of semicrystalline poly (ether-block-amide) PEBAX® thermoplastic elastomers. Polymer 2003, 44, 743-756.  doi: 10.1016/S0032-3861(02)00798-X

    2. [2]

      Hepburn, C. Polyurethane elastomers. Springer Science & Business Media, 2012.

    3. [3]

      Oertel, G. Polyurethane handbook. Reinf. Plast 1986, 30, 51.

    4. [4]

      Harrell, L. L. Segmented Polyurethans. Properties as a function of segment size and distribution. Macromolecules 1969, 2, 607-612.  doi: 10.1021/ma60012a008

    5. [5]

      Oguro, K.; Kun, N.; Nishimura, H.; Kobayashi, M.; Doi, T. Modified PTMG based thermoplastic polyurethane elastomers. J. Elastom. Plast. 1985, 17, 261-272.  doi: 10.1177/009524438501700404

    6. [6]

      Fang, H.; Wang, H.; Sun, J.; Wei, H.; Ding, Y. Tailoring elastomeric properties of waterborne polyurethane by incorporation of polymethyl methacrylate with nanostructural heterogeneity. RSC Adv. 2016, 6, 13589-13599.  doi: 10.1039/C5RA26664E

    7. [7]

      Nozaki, S.; Hirai, T.; Higaki, Y.; Yoshinaga, K.; Kojio, K.; Takahara, A. Effect of chain architecture of polyol with secondary hydroxyl group on aggregation structure and mechanical properties of polyurethane elastomer. Polymer 2017, 116, 423-428.  doi: 10.1016/j.polymer.2017.03.031

    8. [8]

      Petrović, Z. S.; Ferguson, J. Polyurethane elastomers. Prog. Polym. Sci 1991, 16, 695-836.  doi: 10.1016/0079-6700(91)90011-9

    9. [9]

      Prisacariu, C.; Scortanu, E.; Coseri, S.; Agapie, B. Effect of soft segment polydispersity on the elasticity of polyurethane elastomers. Ind. Eng. Chem. Res. 2013, 56, 2316-2322.

    10. [10]

      Tang, D.; Macosko, C. W.; Hillmyer, M. A. Thermoplastic polyurethane elastomers from bio-based poly (δ-decalactone) diols. Polym. Chem. 2014, 5, 3231-3237.  doi: 10.1039/C3PY01120H

    11. [11]

      Xiang, D.; Liu, L.; Liang, Y. Effect of hard segment content on structure, dielectric and mechanical properties of hydroxyl-terminated butadiene-acrylonitrile copolymer-based polyurethane elastomers. Polymer 2017, 132, 180-187.  doi: 10.1016/j.polymer.2017.11.001

    12. [12]

      Lempesis, N.; In, t. V., Pieter J; Rutledge, G. C. Atomistic simulation of the structure and mechanics of a semicrystalline polyether. Macromolecules 2016, 49, 5714-5726.  doi: 10.1021/acs.macromol.6b00555

    13. [13]

      Szycher, M.; Poirier, V. L.; Dempsey, D. J. Development of an aliphatic biomedical-grade polyurethane elastomer. J. Elastom. Plast. 1983, 15, 81-95.  doi: 10.1177/009524438301500205

    14. [14]

      Cheng, G.; Liu, X.; Ruixiang, X. U.; Zhang, J.; Fang, S.; Jiang, Z. Effect of polyether soft segments on the properties of hmdi based transparent polyurethane elastomers. Polyurethane Industry 2016, 31, 40-43.

    15. [15]

      Solíscorrea, R. E.; Vargascoronado, R.; Aguilarvega, M.; Cauichrodríguez, J. V.; Román, J. S.; Marcos, A. Synthesis of HMDI-based segmented polyurethanes and their use in the manufacture of elastomeric composites for cardiovascular applications. J. Biomat. Sci-Polym. E 2007, 18, 561-578.  doi: 10.1163/156856207780852488

    16. [16]

      Li, Z.; Tan, B. H.; Lin, T.; He, C. Recent advances in stereocomplexation of enantiomeric PLA-based copolymers and applications. Prog. Polym. Sci. 2016, 62, 22-72.  doi: 10.1016/j.progpolymsci.2016.05.003

    17. [17]

      Li, Z.; Yuan, D.; Jin, G.; Tan, B. H.; He, C. Facile layer-by-layer self-assembly toward enantiomeric poly (lactide) stereocomplex coated magnetite nanocarrier for highly tunable drug deliveries. ACS Appl. Mater. Interfaces 2016, 8, 1842-1853.  doi: 10.1021/acsami.5b09822

    18. [18]

      Tan, B. H.; Muiruri, J. K.; Li, Z.; He, C. Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain. Chem. Eng. 2016, 4, 5370-5391.  doi: 10.1021/acssuschemeng.6b01713

    19. [19]

      Huang, J.; Lisowski, M. S.; Runt, J.; Hall, E. S.; Kean, R. T.; Buehler, N.; Lin, J. S. Crystallization and microstructure of poly (L-lactide-co-meso-lactide) copolymers. Macromolecules 1998, 31, 2593-2599.  doi: 10.1021/ma9714629

    20. [20]

      Lv, R.; Peng, N.; Jin, T.; Na, B.; Wang, J.; Liu, H. Stereocomplex mesophase and its phase transition in enantiomeric polylactides. Polymer 2017, 116, 324-330.  doi: 10.1016/j.polymer.2017.04.004

    21. [21]

      Abayasinghe, N. K.; Perera, K. P.; Thomas, C.; Daly, A.; Suresh, S.; Burg, K.; Harrison, G. M.; Jr, S. D. Amido-modified polylactide for potential tissue engineering applications. J. Biomat. Sci. Polym. E 2004, 15, 595-606.  doi: 10.1163/156856204323046861

    22. [22]

      Panyam, J.; Vinod Labhasetwar, V. Sustained cytoplasmic delivery of drugs with intracellular receptors using biodegradable nanoparticles. Mol. Pharm. 2004, 1, 77-84.  doi: 10.1021/mp034002c

    23. [23]

      Jain, R. A. The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide) (PLGA) devices. Biomaterials 2000, 21, 2475-2490.  doi: 10.1016/S0142-9612(00)00115-0

    24. [24]

      Jung, T.; Kamm, W.; Breitenbach, A.; Kaiserling, E.; Xiao, J. X.; Kissel, T. Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur. J. Pharm. Biopharm. 2000, 50, 147-160.  doi: 10.1016/S0939-6411(00)00084-9

    25. [25]

      Gu, S. Y.; Yang, M.; Yu, T.; Ren, T. B.; Ren, J. Synthesis and characterization of biodegradable lactic acid-based polymers by chain extension. Polym. Inter. 2008, 57, 982-986.  doi: 10.1002/pi.v57:8

    26. [26]

      Hoshi, M.; Ieshige, M.; Saitoh, T.; Nakagawa, T. Separation of aqueous phenol through polyurethane membranes by pervaporation. II. Influence of diisocyanate and diol compounds and crosslinker. J. Appl. Polym. Sci. 1999, 71, 439-448.  doi: 10.1002/(ISSN)1097-4628

    27. [27]

      Hiltunen, K.; Härkönen, M.; Seppälä, J. V.; Väänänen, T. Synthesis and characterization of lactic acid based telechelic prepolymers. Macromolecules 1996, 29, 8677-8682.  doi: 10.1021/ma960402k

    28. [28]

      Schneider, N. S.; Matton, R. W. Thermal transition behavior of polybutadiene containing polyurethanes. Polym. Eng. Sci. 1979, 19, 1122-1128.  doi: 10.1002/(ISSN)1548-2634

    29. [29]

      Xu, M.; Macknight, W. J.; Chen, C. H. Y.; Thomas, E. L. Structure and morphology of segmented polyurethanes: 1. Influence of incompatability on hard-segment sequence length. Polymer 1983, 24, 1327-1332.  doi: 10.1016/0032-3861(83)90068-X

    30. [30]

      Hesketh, T. R.; Vanbogart, J. W. C.; Cooper, S. L. Differential scanning calorimetry analysis of morphological-changes in segmented elastomers. Polym. Eng. Sci. 1980, 20, 190-197.  doi: 10.1002/(ISSN)1548-2634

    31. [31]

      Tsuji, H.; Ishida, T. Poly (L-lactide). X. Enhanced surface hydrophilicity and chain-scission mechanisms of poly (L-lactide) film in enzymatic, alkaline, and phosphate-buffered solutions. J. Appl. Polym. Sci. 2003, 87, 1628-1633.  doi: 10.1002/app.11605

    32. [32]

      Lucas, J. C.; Failla, M. D.; Smith, F. L.; Mandelkern, L. The double yield in the tensile deformation of the polyethylenes. Polym. Eng. Sci. 1995, 35, 1117-1123.  doi: 10.1002/(ISSN)1548-2634

    33. [33]

      Popli, R.; Mandelkern, L. Influence of structural and morphological factors on the mechanical-properties of the polyethylenes. J. Polym. Sci. Part. B: Polym. Phys. 1987, 25, 441-483.  doi: 10.1002/polb.1987.090250301

    34. [34]

      Lendlein, A.; Kelch, S. Shape-memory polymers. Encyclopedia of Materials Science & Technology 2002, 41, 2034-2057.

    35. [35]

      Zhang, L.; Jiang, Y.; Xiong, Z.; Liu, X.; Na, H.; Zhang, R.; Zhu, J. Highly recoverable rosin-based shape memory polyurethanes. J. Mater. Chem. A 2013, 1, 3263-3267.  doi: 10.1039/c3ta01655b

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    3. [3]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    4. [4]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    5. [5]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    6. [6]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    7. [7]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    8. [8]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    9. [9]

      Ziyi Liu Xunying Liu Lubing Qin Haozheng Chen Ruikai Li Zhenghua Tang . Alkynyl ligand for preparing atomically precise metal nanoclusters: Structure enrichment, property regulation, and functionality enhancement. Chinese Journal of Structural Chemistry, 2024, 43(11): 100405-100405. doi: 10.1016/j.cjsc.2024.100405

    10. [10]

      Jun-Ming CaoKai-Yang ZhangJia-Lin YangZhen-Yi GuXing-Long Wu . Differential bonding behaviors of sodium/potassium-ion storage in sawdust waste carbon derivatives. Chinese Chemical Letters, 2024, 35(4): 109304-. doi: 10.1016/j.cclet.2023.109304

    11. [11]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    12. [12]

      Ya-Nan YangZi-Sheng LiSourav MondalLei QiaoCui-Cui WangWen-Juan TianZhong-Ming SunJohn E. McGrady . Metal-metal bonds in Zintl clusters: Synthesis, structure and bonding in [Fe2Sn4Bi8]3– and [Cr2Sb12]3–. Chinese Chemical Letters, 2024, 35(8): 109048-. doi: 10.1016/j.cclet.2023.109048

    13. [13]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    14. [14]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    15. [15]

      Tianhao Li Wenguang Tu Zhigang Zou . In situ photocatalytically enhanced thermogalvanic cells for electricity and hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(1): 100195-100195. doi: 10.1016/j.cjsc.2023.100195

    16. [16]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    17. [17]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    18. [18]

      Chunru Liu Ligang Feng . Advances in anode catalysts of methanol-assisted water-splitting reactions for hydrogen generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100136-100136. doi: 10.1016/j.cjsc.2023.100136

    19. [19]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    20. [20]

      Abiduweili Sikandaier Yukun Zhu Dongjiang Yang . In-situ decorated cobalt phosphide cocatalyst on Hittorf's phosphorus triggering efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(2): 100242-100242. doi: 10.1016/j.cjsc.2024.100242

Metrics
  • PDF Downloads(0)
  • Abstract views(553)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return