Citation: Esmail Sharifzadeh. Modeling of the Tensile Strength of Immiscible Binary Polymer Blends Considering the Effects of Polymer/Polymer Interface and Morphological Variation[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1176-1182. doi: 10.1007/s10118-019-2274-4 shu

Modeling of the Tensile Strength of Immiscible Binary Polymer Blends Considering the Effects of Polymer/Polymer Interface and Morphological Variation

  • Corresponding author: Esmail Sharifzadeh, E_sharifzadeh@sut.ac.ir
  • Received Date: 5 March 2019
    Revised Date: 10 April 2019
    Accepted Date: 11 April 2019
    Available Online: 4 June 2019

  • In this work, a unique model is proposed for predicting the tensile strength of binary polymer blends considering the effects of polymer/polymer interface and the morphological variation of the system. The modeling was performed based on the combination of analytical and artificial neural network (ANN) modeling methods. For the analytical part, Kolarik’s model was developed in accordance with the system requirements and ANN was simultaneously involved in order to interpret some effective model parameters using the tensile test result of an actual sample (e.g. the yield strength and thickness of the interface, etc.). Furthermore, the model accuracy was evaluated by comparing the tensile test results of differently prepared iPP/PA and PS/PMMA blend samples and also some other data from literature with the model predictions. It was revealed that the designed ANN perfectly elevates the capability of the analytical section in order to predict the tensile strength of binary polymer blends with different compositions (prediction error < 10%).
  • 加载中
    1. [1]

      Gomari, S.; Ghasemi, I.; Karrabi, M.; Azizi, H. Organoclay localization in polyamide 6/ethylene-butene copolymer grafted maleic anhydride blends: The effect of different types of organoclay. J. Polym. Res. 2011, 19, 9769.

    2. [2]

      Fathi, A.; Lee, S.; Breen, A.; Shirazi, A. N.; Valtchev, P.; Dehghani, F. Enhancing the mechanical properties and physical stability of biomimetic polymer hydrogels for micro-patterning and tissue engineering applications. Eur. Polym. J. 2014, 59, 161-170.  doi: 10.1016/j.eurpolymj.2014.07.011

    3. [3]

      Robeson, L. M. Polymer blends: A comprehensive review. Hanser, 2007.

    4. [4]

      Ezzati, P.; Ghasemi, I.; Karrabi, M.; Azizi, H.; Fortelny, I. Preparation of porous PLLA/PCL blend by a combination of PEO phase and NaCl particulate leaching in PLLA/PCL/PEO/NaCl blend. Iran Polym. J. 2014, 23, 757-766.  doi: 10.1007/s13726-014-0270-7

    5. [5]

      Sharifzadeh, E. Modeling of the mechanical properties of blend based polymer nanocomposites considering the effects of janus nanoparticles on polymer/polymer interface. Chinese J. Polym. Sci. 2019, 37, 164-177.  doi: 10.1007/s10118-019-2178-3

    6. [6]

      Minaei-Zaim, M.; Ghasemi, I.; Karrabi, M.; Azizi, H. Effect of injection molding parameters on properties of cross-linked low-density polyethylene/ethylene vinyl acetate/organoclay nanocomposite foams. Iran Polym. J. 2012, 21, 537-546.  doi: 10.1007/s13726-012-0059-5

    7. [7]

      Shonaike, G. O.; Simon, G. P. Polymer Blends and Alloys. Taylor & Francis, 1999.

    8. [8]

      Dasari, A.; Yu, Z. Z.; Mai, Y. W. Polymer nanocomposites: Towards multi-functionality. Springer London, 2016.

    9. [9]

      Gupta, R. K.; Kennel, E.; Kim, K. J. Polymer nanocomposites handbook. CRC Press, 2009.

    10. [10]

      Utracki, L. A. Commercial polymer blends. Springer US, 2013.

    11. [11]

      Sharifzadeh, E.; Salami-Kalajahi, M.; Hosseini, M. S.; Aghjeh, M. K. R. Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface. Colloid. Polym. Sci. 2017, 295, 25-36.  doi: 10.1007/s00396-016-3977-5

    12. [12]

      Chen, S.; Sarafbidabad, M.; Zare, Y.; Rhee, K. Y. Estimation of the tensile modulus of polymer carbon nanotube nanocomposites containing filler networks and interphase regions by development of the Kolarik model. RSC Adv. 2018, 8, 23825-23834.  doi: 10.1039/C8RA01910J

    13. [13]

      Zare, Y. A Two-step method based on micromechanical models to predict the Young’s modulus of polymer nanocomposites. Macromol. Mater. Eng. 2016, 301, 846-852.  doi: 10.1002/mame.v301.7

    14. [14]

      Zare, Y.; Rhee, K. Y. Development of a model for electrical conductivity of polymer/graphene nanocomposites assuming interphase and tunneling regions in conductive networks. Ind. Eng. Chem. Res. 2017, 56, 9107-9115.  doi: 10.1021/acs.iecr.7b01348

    15. [15]

      Sharifzadeh, E.; Ghasemi, I.; Karrabi, M.; Azizi, H. A new approach in modeling of mechanical properties of binary phase polymeric blends. Iran Polym. J. 2014, 23, 525-530.  doi: 10.1007/s13726-014-0247-6

    16. [16]

      Kolařík, J. Three-dimensional models for predicting the modulus and yield strength of polymer blends, foams, and particulate composites. Polym. Compos. 1997, 18, 433-441.  doi: 10.1002/(ISSN)1548-0569

    17. [17]

      Sharifzadeh, E.; Ghasemi, I.; Safajou-Jahankhanemlou, M. Modulus prediction of binary phase polymeric blends using symmetrical approximation systems as a new approach. Iran Polym. J. 2015, 24, 735-746.  doi: 10.1007/s13726-015-0362-z

    18. [18]

      Ji, X. L.; Jing, J. K.; Jiang, W.; Jiang, B. Z. Tensile modulus of polymer nanocomposites. Polym. Eng. Sci. 2002, 42, 983-993.  doi: 10.1002/(ISSN)1548-2634

    19. [19]

      Kolarik, J. Simultaneous prediction of the modulus and yield strength of binary polymer blends. Polym. Eng. Sci. 1996, 36, 2518-2524.  doi: 10.1002/(ISSN)1548-2634

    20. [20]

      Wang, J. F.; Carson, J. K.; North, M. F.; Cleland, D. J. A knotted and interconnected skeleton structural model for predicting Young's modulus of binary phase polymer blends. Polym. Eng. Sci. 2010, 50, 643-651.  doi: 10.1002/pen.21592

    21. [21]

      Sharifzadeh, E.; Ghasemi, I.; Qarebagh, A. N. Modeling of blend-based polymer nanocomposites using a knotted approximation of Young’s modulus. Iran Polym. J. 2015, 24, 1039-1047.  doi: 10.1007/s13726-015-0391-7

    22. [22]

      Werner, A.; Schmid, F.; Müller, M.; Binder, K. In Interfaces in immiscible polymer blends: A Monte Carlo simulation approach on the CRAY T3E, Berlin, Heidelberg, Springer Berlin Heidelberg: Berlin, Heidelberg, 1999, pp. 176−185.

    23. [23]

      Kar, G. P.; Biswas, S.; Bose, S. Tailoring the interface of an immiscible polymer blend by a mutually miscible homopolymer grafted onto graphene oxide: outstanding mechanical properties. PCCP 2015, 17, 1811-1821.  doi: 10.1039/C4CP04481A

    24. [24]

      Oslanec, R.; Brown, H. R. Entanglement density at the interface between two immiscible polymers. Macromolecules 2003, 36, 5839-5844.  doi: 10.1021/ma021044q

    25. [25]

      Li, J.; Ma, P. L.; Favis, B. D. The role of the blend interface type on morphology in cocontinuous polymer blends. Macromolecules 2002, 35, 2005-2016.  doi: 10.1021/ma010104+

    26. [26]

      Pukánszky, B.; Tüdõs, F. Miscibility and mechanical properties of polymer blends. Macromolecular Symposia 1990, 38, 221-231.  doi: 10.1002/(ISSN)1521-3900a

    27. [27]

      Yousef, B. F.; Mourad, A. H. I.; Hilal-Alnaqbi, A. Prediction of the mechanical properties of PE/PP blends using artificial neural networks. Procedia Eng. 2011, 10, 2713-2718.  doi: 10.1016/j.proeng.2011.04.452

    28. [28]

      Yousef, B. F.; Mourad, A. H. I.; Hilal-Alnaqbi, A. Modeling of the mechanical behavior of polyethylene/polypropylene blends using artificial neural networks. Int. J. Adv. Manuf. Technol. 2013, 64, 601-611.  doi: 10.1007/s00170-012-4069-4

    29. [29]

      Balasubramanian, M.; Paglicawan, M. A.; Zhang, Z. X.; Lee, S. H.; Xin, Z. X.; Kim, J. K. Prediction and optimization of mechanical properties of polypropylene/waste tire powder blends using a hybrid artificial neural network-genetic algorithm (GA-ANN). J. Thermoplast. Compos. Mater. 2008, 21, 51-69.  doi: 10.1177/0892705707084543

    30. [30]

      Roy, N. K.; Potter, W. D.; Landau, D. P.. Designing Polymer Blends Using Neural Networks, Genetic Algorithms, and Markov Chains. Appl. Intell. 2004, 20, 215-229.  doi: 10.1023/B:APIN.0000021414.50728.34

    31. [31]

      Werner, A.; Schmid, F.; Müller, M.; Binder, K. In Interfaces in immiscible polymer blends: A Monte Carlo simulation approach on the CRAY T3E, High performance computing in science and engineering ′98, Krause, E.; Jäger, W., Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 176−185.

    32. [32]

      Dong, B.; Guo, R.; Yan, L. T. Coassembly of janus nanoparticles in asymmetric diblock copolymer scaffolds: unconventional entropy effect and role of interfacial topology. Macromolecules 2014, 47, 4369-4379.  doi: 10.1021/ma500161j

    33. [33]

      Chen, P.; Yang, Y.; Dong, B.; Huang, Z.; Zhu, G.; Cao, Y.; Yan, L. T. Polymerization-induced interfacial self-assembly of Janus nanoparticles in block copolymers: Reaction-mediated entropy effects, diffusion dynamics, and tailorable micromechanical behaviors. Macromolecules 2017, 50, 2078-2091.  doi: 10.1021/acs.macromol.7b00012

    34. [34]

      Teh, J. W. Structure and properties of polyethylene-polypropylene blend. J. Appl. Polym. Sci. 1983, 28, 605-618.  doi: 10.1002/app.1983.070280216

    35. [35]

      Bataille, P.; Boissé, S.; Schreiber, H. P. Mechanical properties and permeability of polypropylene and poly(ethylene terephthalate) mixtures. Polym. Eng. Sci. 1987, 27, 622-626.  doi: 10.1002/pen.v27:9

    36. [36]

      Menyhárd, A.; Varga, J.; Liber, Á.; Belina, G. Polymer blends based on the β-modification of polypropylene. Eur. Polym. J. 2005, 41, 669-677.  doi: 10.1016/j.eurpolymj.2004.10.036

    37. [37]

      Bartczak, Z.; Galeski, A. Mechanical properties of polymer blends. In Polymer Blends Handbook, Utracki, L. A.; Wilkie, C. A., Eds. Springer Netherlands, Dordrecht, 2014, pp. 1203−1297.

    38. [38]

      Utracki, L. A.; Wilkie, C. A. Polymer blends handbook. Springer Netherlands, 2014.

  • 加载中
    1. [1]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    2. [2]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    3. [3]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    4. [4]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    5. [5]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    6. [6]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    7. [7]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    8. [8]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    9. [9]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    10. [10]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    11. [11]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    12. [12]

      Xu Li Yue Zhao Tingli Ma . Improved polymer electrolyte interfacial contact via constructing vertically aligned fillers. Chinese Journal of Structural Chemistry, 2025, 44(2): 100406-100406. doi: 10.1016/j.cjsc.2024.100406

    13. [13]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    14. [14]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    15. [15]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    16. [16]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    17. [17]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    18. [18]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    19. [19]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    20. [20]

      Xiang WangQingping SongZixiang HeGong ZhangTengfei MiaoXiaoxiao ChengWei Zhang . Constructing diverse switchable circularly polarized luminescence via a single azobenzene polymer film. Chinese Chemical Letters, 2025, 36(1): 110047-. doi: 10.1016/j.cclet.2024.110047

Metrics
  • PDF Downloads(0)
  • Abstract views(767)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return