Modeling of the Tensile Strength of Immiscible Binary Polymer Blends Considering the Effects of Polymer/Polymer Interface and Morphological Variation
- Corresponding author: Esmail Sharifzadeh, E_sharifzadeh@sut.ac.ir
Citation: Esmail Sharifzadeh. Modeling of the Tensile Strength of Immiscible Binary Polymer Blends Considering the Effects of Polymer/Polymer Interface and Morphological Variation[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1176-1182. doi: 10.1007/s10118-019-2274-4
Gomari, S.; Ghasemi, I.; Karrabi, M.; Azizi, H. Organoclay localization in polyamide 6/ethylene-butene copolymer grafted maleic anhydride blends: The effect of different types of organoclay. J. Polym. Res. 2011, 19, 9769.
Fathi, A.; Lee, S.; Breen, A.; Shirazi, A. N.; Valtchev, P.; Dehghani, F. Enhancing the mechanical properties and physical stability of biomimetic polymer hydrogels for micro-patterning and tissue engineering applications. Eur. Polym. J. 2014, 59, 161-170.
doi: 10.1016/j.eurpolymj.2014.07.011
Robeson, L. M. Polymer blends: A comprehensive review. Hanser, 2007.
Ezzati, P.; Ghasemi, I.; Karrabi, M.; Azizi, H.; Fortelny, I. Preparation of porous PLLA/PCL blend by a combination of PEO phase and NaCl particulate leaching in PLLA/PCL/PEO/NaCl blend. Iran Polym. J. 2014, 23, 757-766.
doi: 10.1007/s13726-014-0270-7
Sharifzadeh, E. Modeling of the mechanical properties of blend based polymer nanocomposites considering the effects of janus nanoparticles on polymer/polymer interface. Chinese J. Polym. Sci. 2019, 37, 164-177.
doi: 10.1007/s10118-019-2178-3
Minaei-Zaim, M.; Ghasemi, I.; Karrabi, M.; Azizi, H. Effect of injection molding parameters on properties of cross-linked low-density polyethylene/ethylene vinyl acetate/organoclay nanocomposite foams. Iran Polym. J. 2012, 21, 537-546.
doi: 10.1007/s13726-012-0059-5
Shonaike, G. O.; Simon, G. P. Polymer Blends and Alloys. Taylor & Francis, 1999.
Dasari, A.; Yu, Z. Z.; Mai, Y. W. Polymer nanocomposites: Towards multi-functionality. Springer London, 2016.
Gupta, R. K.; Kennel, E.; Kim, K. J. Polymer nanocomposites handbook. CRC Press, 2009.
Utracki, L. A. Commercial polymer blends. Springer US, 2013.
Sharifzadeh, E.; Salami-Kalajahi, M.; Hosseini, M. S.; Aghjeh, M. K. R. Synthesis of silica Janus nanoparticles by buoyancy effect-induced desymmetrization process and their placement at the PS/PMMA interface. Colloid. Polym. Sci. 2017, 295, 25-36.
doi: 10.1007/s00396-016-3977-5
Chen, S.; Sarafbidabad, M.; Zare, Y.; Rhee, K. Y. Estimation of the tensile modulus of polymer carbon nanotube nanocomposites containing filler networks and interphase regions by development of the Kolarik model. RSC Adv. 2018, 8, 23825-23834.
doi: 10.1039/C8RA01910J
Zare, Y. A Two-step method based on micromechanical models to predict the Young’s modulus of polymer nanocomposites. Macromol. Mater. Eng. 2016, 301, 846-852.
doi: 10.1002/mame.v301.7
Zare, Y.; Rhee, K. Y. Development of a model for electrical conductivity of polymer/graphene nanocomposites assuming interphase and tunneling regions in conductive networks. Ind. Eng. Chem. Res. 2017, 56, 9107-9115.
doi: 10.1021/acs.iecr.7b01348
Sharifzadeh, E.; Ghasemi, I.; Karrabi, M.; Azizi, H. A new approach in modeling of mechanical properties of binary phase polymeric blends. Iran Polym. J. 2014, 23, 525-530.
doi: 10.1007/s13726-014-0247-6
Kolařík, J. Three-dimensional models for predicting the modulus and yield strength of polymer blends, foams, and particulate composites. Polym. Compos. 1997, 18, 433-441.
doi: 10.1002/(ISSN)1548-0569
Sharifzadeh, E.; Ghasemi, I.; Safajou-Jahankhanemlou, M. Modulus prediction of binary phase polymeric blends using symmetrical approximation systems as a new approach. Iran Polym. J. 2015, 24, 735-746.
doi: 10.1007/s13726-015-0362-z
Ji, X. L.; Jing, J. K.; Jiang, W.; Jiang, B. Z. Tensile modulus of polymer nanocomposites. Polym. Eng. Sci. 2002, 42, 983-993.
doi: 10.1002/(ISSN)1548-2634
Kolarik, J. Simultaneous prediction of the modulus and yield strength of binary polymer blends. Polym. Eng. Sci. 1996, 36, 2518-2524.
doi: 10.1002/(ISSN)1548-2634
Wang, J. F.; Carson, J. K.; North, M. F.; Cleland, D. J. A knotted and interconnected skeleton structural model for predicting Young's modulus of binary phase polymer blends. Polym. Eng. Sci. 2010, 50, 643-651.
doi: 10.1002/pen.21592
Sharifzadeh, E.; Ghasemi, I.; Qarebagh, A. N. Modeling of blend-based polymer nanocomposites using a knotted approximation of Young’s modulus. Iran Polym. J. 2015, 24, 1039-1047.
doi: 10.1007/s13726-015-0391-7
Werner, A.; Schmid, F.; Müller, M.; Binder, K. In Interfaces in immiscible polymer blends: A Monte Carlo simulation approach on the CRAY T3E, Berlin, Heidelberg, Springer Berlin Heidelberg: Berlin, Heidelberg, 1999, pp. 176−185.
Kar, G. P.; Biswas, S.; Bose, S. Tailoring the interface of an immiscible polymer blend by a mutually miscible homopolymer grafted onto graphene oxide: outstanding mechanical properties. PCCP 2015, 17, 1811-1821.
doi: 10.1039/C4CP04481A
Oslanec, R.; Brown, H. R. Entanglement density at the interface between two immiscible polymers. Macromolecules 2003, 36, 5839-5844.
doi: 10.1021/ma021044q
Li, J.; Ma, P. L.; Favis, B. D. The role of the blend interface type on morphology in cocontinuous polymer blends. Macromolecules 2002, 35, 2005-2016.
doi: 10.1021/ma010104+
Pukánszky, B.; Tüdõs, F. Miscibility and mechanical properties of polymer blends. Macromolecular Symposia 1990, 38, 221-231.
doi: 10.1002/(ISSN)1521-3900a
Yousef, B. F.; Mourad, A. H. I.; Hilal-Alnaqbi, A. Prediction of the mechanical properties of PE/PP blends using artificial neural networks. Procedia Eng. 2011, 10, 2713-2718.
doi: 10.1016/j.proeng.2011.04.452
Yousef, B. F.; Mourad, A. H. I.; Hilal-Alnaqbi, A. Modeling of the mechanical behavior of polyethylene/polypropylene blends using artificial neural networks. Int. J. Adv. Manuf. Technol. 2013, 64, 601-611.
doi: 10.1007/s00170-012-4069-4
Balasubramanian, M.; Paglicawan, M. A.; Zhang, Z. X.; Lee, S. H.; Xin, Z. X.; Kim, J. K. Prediction and optimization of mechanical properties of polypropylene/waste tire powder blends using a hybrid artificial neural network-genetic algorithm (GA-ANN). J. Thermoplast. Compos. Mater. 2008, 21, 51-69.
doi: 10.1177/0892705707084543
Roy, N. K.; Potter, W. D.; Landau, D. P.. Designing Polymer Blends Using Neural Networks, Genetic Algorithms, and Markov Chains. Appl. Intell. 2004, 20, 215-229.
doi: 10.1023/B:APIN.0000021414.50728.34
Werner, A.; Schmid, F.; Müller, M.; Binder, K. In Interfaces in immiscible polymer blends: A Monte Carlo simulation approach on the CRAY T3E, High performance computing in science and engineering ′98, Krause, E.; Jäger, W., Eds. Springer Berlin Heidelberg, Berlin, Heidelberg, 1999, pp. 176−185.
Dong, B.; Guo, R.; Yan, L. T. Coassembly of janus nanoparticles in asymmetric diblock copolymer scaffolds: unconventional entropy effect and role of interfacial topology. Macromolecules 2014, 47, 4369-4379.
doi: 10.1021/ma500161j
Chen, P.; Yang, Y.; Dong, B.; Huang, Z.; Zhu, G.; Cao, Y.; Yan, L. T. Polymerization-induced interfacial self-assembly of Janus nanoparticles in block copolymers: Reaction-mediated entropy effects, diffusion dynamics, and tailorable micromechanical behaviors. Macromolecules 2017, 50, 2078-2091.
doi: 10.1021/acs.macromol.7b00012
Teh, J. W. Structure and properties of polyethylene-polypropylene blend. J. Appl. Polym. Sci. 1983, 28, 605-618.
doi: 10.1002/app.1983.070280216
Bataille, P.; Boissé, S.; Schreiber, H. P. Mechanical properties and permeability of polypropylene and poly(ethylene terephthalate) mixtures. Polym. Eng. Sci. 1987, 27, 622-626.
doi: 10.1002/pen.v27:9
Menyhárd, A.; Varga, J.; Liber, Á.; Belina, G. Polymer blends based on the β-modification of polypropylene. Eur. Polym. J. 2005, 41, 669-677.
doi: 10.1016/j.eurpolymj.2004.10.036
Bartczak, Z.; Galeski, A. Mechanical properties of polymer blends. In Polymer Blends Handbook, Utracki, L. A.; Wilkie, C. A., Eds. Springer Netherlands, Dordrecht, 2014, pp. 1203−1297.
Utracki, L. A.; Wilkie, C. A. Polymer blends handbook. Springer Netherlands, 2014.
Lei Zhou , Youjun Zhou , Lizhen Fang , Yiqiao Bai , Yujia Meng , Liang Li , Jie Yang , Yong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509
Zihao Wang , Jing Xue , Zhicui Song , Jianxiong Xing , Aijun Zhou , Jianmin Ma , Jingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489
Tiankai Sun , Hui Min , Zongsu Han , Liang Wang , Peng Cheng , Wei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718
Mengjun Sun , Zhi Wang , Jvhui Jiang , Xiaobing Wang , Chuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393
Huimin Gao , Zhuochen Yu , Xuze Zhang , Xiangkun Yu , Jiyuan Xing , Youliang Zhu , Hu-Jun Qian , Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266
Dong Lv , Xuelei Liu , Wei Li , Qiang Zhang , Xinhong Yu , Yanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401
Jinjie Lu , Qikai Liu , Yuting Zhang , Yi Zhou , Yanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
Yuanzhe Lu , Yuanqin Zhu , Linfeng Zhong , Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249
Qianqian Song , Yunting Zhang , Jianli Liang , Si Liu , Jian Zhu , Xingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797
Xin-Tong Zhao , Jin-Zhi Guo , Wen-Liang Li , Jing-Ping Zhang , Xing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715
Xin Li , Xuan Ding , Junkun Zhou , Hui Shi , Zhenxi Dai , Jiayi Liu , Yongcun Ma , Penghui Shao , Liming Yang , Xubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158
Zhihong LUO , Yan SHI , Jinyu AN , Deyi ZHENG , Long LI , Quansheng OUYANG , Bin SHI , Jiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444
Panke Zhou , Hong Yu , Mun Yin Chee , Tao Zeng , Tianli Jin , Hongling Yu , Shuo Wu , Wen Siang Lew , Xiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279
Jun Guo , Zhenbang Zhuang , Wanqiang Liu , Gang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Kexin Yuan , Yulei Liu , Haoran Feng , Yi Liu , Jun Cheng , Beiyang Luo , Qinglian Wu , Xinyu Zhang , Ying Wang , Xian Bao , Wanqian Guo , Jun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022
Ningning Gao , Yue Zhang , Zhenhao Yang , Lijing Xu , Kongyin Zhao , Qingping Xin , Junkui Gao , Junjun Shi , Jin Zhong , Huiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820
Peizhe Li , Qiaoling Liu , Mengyu Pei , Yuci Gan , Yan Gong , Chuchen Gong , Pei Wang , Mingsong Wang , Xiansong Wang , Da-Peng Yang , Bo Liang , Guangyu Ji . Chlorogenic acid supported strontium polyphenol networks ensemble microneedle patch to promote diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109457-. doi: 10.1016/j.cclet.2023.109457
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307