Citation: Han Liu, Guang-Su Huang, Lai-Yun Wei, Jian Zeng, Xuan Fu, Cheng Huang, Jin-Rong Wu. Inhomogeneous Natural Network Promoting Strain-induced Crystallization: A Mesoscale Model of Natural Rubber[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1142-1151. doi: 10.1007/s10118-019-2267-3 shu

Inhomogeneous Natural Network Promoting Strain-induced Crystallization: A Mesoscale Model of Natural Rubber

  • Although synthetic rubbers show continuously improved mechanical properties, natural rubber (NR) remains irreplaceable in the rubber family due to its superior mechanical properties. A mainstream viewpoint regarding the superiority of NR is that NR possesses a natural network formed by linking the poly(cis-1,4-isoprene) chain terminals to protein and phospholipid aggregates; after vulcanization, the natural network additionally contributes to rubber mechanics by both increasing the network density and promoting the strain-induced crystallization (SIC) behavior. However, the reason why the natural network promotes SIC is still unclear; in particular, only using the increased network density cannot explain our finding that the NR shows smaller onset strain of SIC than Gel (the gel component of NR with higher network density) and even vulcanized NR. Herein, we point out that the inhomogeneous chain deformation is the alternative reason why SIC of NR takes place at smaller strain than that of Gel. More specifically, although the natural network is homogenous on the subchain length scale based on the proton double-quantum NMR results, it is essentially inhomogeneous on mesoscale (100 nm), as revealed by the small angle X-ray scattering analysis. This inhomogeneous network also leads to the mesoscale deformation inhomogeneity, as detected by the orientation of stearic acid (SA) probe, thus resulting in the smaller onset strain of SIC of NR. Based on the experimental results, a mesoscale model is proposed to qualitatively describe the crucial roles of inhomogeneous structure and deformation of natural network in NR’s mechanical properties, providing a clue from nature to guide the development of high-performance rubbers with controlled structures at mesoscale.
  • 加载中
    1. [1]

      Kohjiya, S; Ikeda, Y. Chemistry, Manufacture and applications of natural rubber. Cambridge, UK, Woodhead Publishing, 2014.

    2. [2]

      Gent, A.; Kawahara, S.; Zhao, J. Crystallization and strength of natural rubber and synthetic cis-1,4-polyisoprene. Rubber Chem. Technol. 1998, 71, 668–678.  doi: 10.5254/1.3538496

    3. [3]

      Tanaka, Y. Structural characterization of natural polyisoprenes: Solve the mystery of natural rubber based on structural study. Rubber Chem. Technol. 2001, 74, 355–375.  doi: 10.5254/1.3547643

    4. [4]

      Tarachiwin, L.; Sakdapipanich, J.; Ute, K.; Kitayama, T.; Bamba, T.; Fukusaki, E.-i.; Kobayashi, A.; Tanaka, Y. Structural Characterization of α-terminal group of natural rubber. 1. Decomposition of branch-points by lipase and phosphatase treatments. Biomacromolecules 2005, 6, 1851–1857.

    5. [5]

      Tarachiwin, L.; Sakdapipanich, J.; Ute, K.; Kitayama, T.; Tanaka, Y. Structural characterization of α-terminal group of natural rubber. 2. Decomposition of branch-points by phospholipase and chemical treatments. Biomacromolecules 2005, 6, 1858–1863.  doi: 10.1021/bm058004p

    6. [6]

      Karino, T.; Ikeda, Y.; Yasuda, Y.; Kohjiya, S.; Shibayama, M. Nonuniformity in natural rubber as revealed by small-angle neutron scattering, small-angle X-ray scattering, and atomic force microscopy. Biomacromolecules 2007, 8, 693-699.  doi: 10.1021/bm060983d

    7. [7]

      Toki, S.; Burger, C.; Hsiao, B. S.; Amnuaypornsri, S.; Sakdapipanich, J.; Tanaka, Y. Multi-scaled microstructures in natural rubber characterized by synchrotron X-ray Scattering and optical microscopy. J. Polym. Sci., Part B: Polym. Phys. 2008, 46, 2456–2464.  doi: 10.1002/polb.v46:22

    8. [8]

      Amnuaypornsri, S.; Sakdapipanich, J.; Toki, S.; Hsiao, B.; Ichikawa, N.; Tanaka, Y. Strain-induced crystallization of natural rubber: effect of proteins and phospholipids. Rubber Chem. Technol. 2008, 81, 753–766.  doi: 10.5254/1.3548230

    9. [9]

      Tanaka, Y.; Tarachiwin, L. Recent advances in structural characterization of natural rubber. Rubber Chem. Technol. 2009, 82, 283–314.  doi: 10.5254/1.3548250

    10. [10]

      Toki, S.; Hsiao, B. S.; Amnuaypornsri, S.; Sakdapipanich, J. New insights into the relationship between network structure and strain-induced crystallization in un-vulcanized and vulcanized natural rubber by synchrotron X-ray diffraction. Polymer 2009, 50, 2142–2148.  doi: 10.1016/j.polymer.2009.03.001

    11. [11]

      Che, J.; Burger C.; Toki, S.; Rong, L.; Hsiao, B. Crystal and crystallites structure of natural rubber and synthetic cis-1,4-polyisoprene by a new two dimensional wide angle X-ray diffraction simulation method. I. Strain-induced crystallization. Macromolecules 2013, 46, 4520–4528.

    12. [12]

      Toki, S.; Che, J.; Rong, L.; Hsiao, B. S.; Amnuaypornsri, S.; Nimpaiboon, A.; Sakdapipanich, J. Entanglements and networks to strain-induced crystallization and stress-strain relations in natural rubber and synthetic polyisoprene at various temperatures. Macromolecules 2013, 46, 5238–5248.  doi: 10.1021/ma400504k

    13. [13]

      Liu, J.; Wang, S.; Tang, Z.; Huang, J; Guo, B.; Huang, G. Bioinspired engineering of two different types of sacrificial bonds into chemically cross-linked cis-1,4-polyisoprene toward a high-performance elastomer. Macromolecules 2016, 49, 8593–8604.  doi: 10.1021/acs.macromol.6b01576

    14. [14]

      Zhou, Y.; Kosugi, K.; Yamamoto, Y.; Kawahara, S. Effect of nonrubber components on the mechanical properties of natural rubber. Polym. Adv. Technol. 2017, 28, 159–165.  doi: 10.1002/pat.3870

    15. [15]

      Wu, J.; Qu, W.; Huang, G.; Wang, S.; Huang, C.; Liu, H. Super-resolution fluorescence imaging of spatial organization of proteins and lipids in natural rubber. Biomacromolecules 2017, 18, 1705–1712.  doi: 10.1021/acs.biomac.6b01827

    16. [16]

      Sainumsai, W.; Toki, S.; Amnuaypornsri, S.; Nimpaiboon, A.; Sakdapipanich, J.; Rong, L.; Hsiao, B.; Suchiva, K. Dependence of the onset of strain-induced crystallization of natural rubber and its synthetic analogue on crosslink and entanglement by using synchrotron X-Ray. Rubber Chem. Technol. 2017, 90, 728–742.  doi: 10.5254/rct.18.82693

    17. [17]

      Gabrielle, B.; Gomez, E.; Korb, J. Probing rubber cross-linking generation of industrial polymer networks at nanometer scale. J. Phys. Chem. B 2016, 120, 5581–5589.

    18. [18]

      Valentin, J. L.; Posadas, P.; Fernandez-Torres, A.; Malmierca, M. A.; Gonzalez, L.; Chasse, W.; Saalwaechter, K. Inhomogeneities and chain dynamics in diene rubbers vulcanized with different cure systems. Macromolecules 2010, 43, 4210–4222.  doi: 10.1021/ma1003437

    19. [19]

      Tosaka, M.; Murakami, S.; Poompradub, S.; Kohjiya, S.; Ikeda, Y.; Toki, S.; Sics, I.; Hsiao, B. S. Orientation and crystallization of natural rubber network as revealed by WAXD using synchrotron radiation. Macromolecules 2004, 37, 3299–3309.  doi: 10.1021/ma0355608

    20. [20]

      Nie, Y. J.; Gao, H. H.; Yu, M. H.; Hu, Z. M.; Reiter, G.; Hu, W. B. Competition of crystal nucleation to fabricate the oriented semi-crystalline polymers. Polymer 2013, 54(13), 3402–3407.  doi: 10.1016/j.polymer.2013.04.047

    21. [21]

      Zhang, M. M.; Zha, L. Y.; Gao, H. H.; Nie, Y. J.; Hu, W. B. How polydispersity of network polymers influences strain-induced crystal nucleation in a rubber. Chinese J. Polym. Sci. 2014, 32(9), 1218–1223.  doi: 10.1007/s10118-014-1495-9

    22. [22]

      Weng, G.; Huang, G.; Qu, L.; Nie, Y.; Wu, J. Large-scale orientation in a vulcanized stretched natural rubber network: Proved by in situ synchrotron X-ray diffraction. J. Phys. Chem. B 2010, 114, 7179–7188.

    23. [23]

      Ikeda, Y.; Higashitani, N.; Hijikata, K.; Kokubo, Y.; Morita, Y.; Shibayama, M.; Osaka, N.; Suzuki, T.; Endo, H.; Kohjiya, S. Vulcanization: New focus on a traditional technology by small-angle neutron scattering. Macromolecules 2009, 42, 2741–2748.  doi: 10.1021/ma802730z

    24. [24]

      Ikeda, Y.; Yasuda, Y.; Hijikata, K.; Tosaka, M.; Kohjiya, S. Comparative study on strain-induced crystallization behavior of peroxide cross-linked and sulfur cross-linked natural rubber. Macromolecules 2008, 41, 5876–5884.  doi: 10.1021/ma800144u

    25. [25]

      Suzuki, T.; Osaka, N.; Endo, H.; Shibayama, M.; Ikeda, Y.; Asai, H.; Higashitani, N.; Kokubo, Y.; Kohjiya, S. Nonuniformity in cross-linked natural rubber as revealed by contrast-variation small-angle neutron scattering. Macromolecules 2010, 43, 1556–1563.  doi: 10.1021/ma9019416

    26. [26]

      Toki, S.; Sics, I.; Ran, S. F.; Liu, L. Z.; Hsiao, B. S.; Murakami, S.; Senoo, K.; Kohjiya, S. New insights into structural development in natural rubber during uniaxial deformation by in situ synchrotron X-ray diffraction. Macromolecules 2002, 35, 6578–6584.  doi: 10.1021/ma0205921

    27. [27]

      Tosaka, M. A Route for the thermodynamic description of strain-induced crystallization in sulfur-cured natural rubber. Macromolecules 2009, 42, 6166–6174.  doi: 10.1021/ma900954c

    28. [28]

      Candau, N.; Laghmach, R.; Chazeau, L.; Chenal J.; Gauthier, C.; Biben, T.; Munch, E. Strain-induced crystallization of natural rubber and cross-link densities heterogeneities. Macromolecules 2014, 47, 5815–5824.  doi: 10.1021/ma5006843

    29. [29]

      Ran, S.; Fang, D.; Zong, X.; Hsiao, B. S.; Chu, B.; Cunniff, P. M. Structural changes during deformation of Kevlar fibers via on-line synchrotron SAXS/WAXD techniques. Polymer 2001,42, 1601–1612.  doi: 10.1016/S0032-3861(00)00460-2

    30. [30]

      Shibayama, M.; Kurokawa, H.; Nomura, S.; Muthukumar, M.; Stein, R.; Roy, S. Small-angle neutron scattering from poly(vinyl alcohol)-borate gels. Polymer 1992, 33, 2883–2890.  doi: 10.1016/0032-3861(92)90072-5

    31. [31]

      Ott, M.; Perez-Aparicio, R.; Schneider, H.; Sotta, P.; Saalwachter, K. Microscopic Study of chain deformation and orientation in uniaxially strained polymer networks: NMR results versus different network models. Macromolecules 2014, 47, 7597–7611.  doi: 10.1021/ma5012655

    32. [32]

      Saalwaechter, K. Proton Multiple-quantum NMR for the study of chain dynamics and structural constraints in polymeric soft materials. Progress in nuclear magnetic resonance spectroscopy 2007, 51, 1-35.  doi: 10.1016/j.pnmrs.2007.01.001

    33. [33]

      Saalwächte, K. Chain order and cross-link density of elastomers as investigated by proton multiple-quantum NMR. Macromolecules 2005, 38, 9650–9660.  doi: 10.1021/ma051238g

    34. [34]

      Pérez-Aparicio, R.; Schiewek, M.; López Valentín, J.; Schneider, H.; Long, D.; Saphiannikova, M.; Sotta, P.; Saalwächter, K.; Ott, M. Local chain deformation and overstrain in reinforced elastomers: An NMR study. Macromolecules 2013, 46, 5549–5560.  doi: 10.1021/ma400921k

    35. [35]

      Chasse, W.; Valentin, J.; Genesky, G.; Cohen, C.; Saalwachter, K. Precise dipolar coupling constant distribution analysis in proton multi-quantum NMR Elastomers. J. Chem. Phys. 2011, 134, 044907-044916.  doi: 10.1063/1.3534856

    36. [36]

      Naumovaa, A.; Tschierskeb, C; Saalwächtera, K. Orientation-dependent proton double-quantum NMR build-up function for soft materials with anisotropic mobility. Solid State Nucl. Mag. 2017, 82, 22–28.  doi: 10.1016/j.ssnmr.2017.01.006

    37. [37]

      Eriko Sato Matsuo, Michal Orkisz, Shao-Tang Sun, Yong Li, Toyoichi Tanaka. Origin of structural inhomogeneity in polymer gels. Macromolecules 1994, 27, 6791–6796.  doi: 10.1021/ma00101a018

    38. [38]

      Brostowitz, N.; Weiss, R.; Cavicchi, K. Facile fabrication of a shape memory polymer by swelling cross-linked natural rubber with stearic acid. ACS Macro Lett. 2014, 3, 374–377.  doi: 10.1021/mz500131r

    39. [39]

      Boue, F.; Bastide, J.; Buzier, M.; Collette, C.; Lapp, A.; Herz, J. Dynamics of permanent and temporary networks: Small angle neutron scattering measurements and related remarks on the classical models of rubber deformation. Prog. Colloid Polym. Sci. 1987, 75, 152–170.

    40. [40]

      Wagner, M. H. Analysis of small-angle neutron scattering data on poly(dimethylsiloxane) network unfolding. Macromolecules 1994, 27, 5223–5226.  doi: 10.1021/ma00096a056

  • 加载中
    1. [1]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    2. [2]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    3. [3]

      Yingjie WangPeng TangWenchao TuQi GaoCuizhu WangLuying TanLixin ZhaoHongye HanLiefeng MaKouharu OtsukiWeilie XiaoWenli WangJinping LiuYong LiZhajun ZhanWei LiXianli ZhouNing Li . Highly anticipated natural diterpenoids as an important source of new drugs in 2013–2023. Chinese Chemical Letters, 2025, 36(1): 109955-. doi: 10.1016/j.cclet.2024.109955

    4. [4]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    5. [5]

      Deli ChenJiawen LiXudong XuZhaocui SunYun YangMinghui XuHanqiao LiangJunshan YangHui MengGuoxu MaJianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451

    6. [6]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    7. [7]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    8. [8]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

    9. [9]

      Zhexin ChenYuqing ShiFang ZhongKai ZhangFurong ZhangShenghong XieZhongbin ChengQian ZhouYi-You HuangHai-Bin Luo . Discovery of amentoflavone as a natural PDE4 inhibitor with anti-fibrotic effects. Chinese Chemical Letters, 2025, 36(4): 109956-. doi: 10.1016/j.cclet.2024.109956

    10. [10]

      Zirui ZhuPeng LiuJinhua WangHongbin ZhangWei Luo . Effects of nano-metakaolin on the enhanced properties and microstructure development of natural hydraulic lime. Chinese Chemical Letters, 2025, 36(4): 109794-. doi: 10.1016/j.cclet.2024.109794

    11. [11]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    12. [12]

      Ruiheng LiangHuizhong WuZhongzheng HuGe SongXuyang ZhangOmotayo A. ArotibaMinghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136

    13. [13]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    14. [14]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    15. [15]

      Guizhi ZhuJunrui TanLongfei TanQiong WuXiangling RenChanghui FuZhihui ChenXianwei Meng . Growth of CeCo-MOF in dendritic mesoporous organosilica as highly efficient antioxidant for enhanced thermal stability of silicone rubber. Chinese Chemical Letters, 2025, 36(1): 109669-. doi: 10.1016/j.cclet.2024.109669

    16. [16]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    17. [17]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    18. [18]

      Chuan LiYangyang HanYanan ZhaiKe LiXingzhong LiuZhuan ZhangCai JiaYongsheng Che . Phomaketals A and B, pentacyclic meroterpenoids from a eupC overexpressed mutant strain of Phoma sp.. Chinese Chemical Letters, 2024, 35(7): 109019-. doi: 10.1016/j.cclet.2023.109019

    19. [19]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    20. [20]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

Metrics
  • PDF Downloads(0)
  • Abstract views(754)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return