Citation: Yong Guan, Jian Hu, Yong-Kang Huang, Yang You, Huan-Yao Zhang, An-Na Zheng, Xiang Xu, Da-Fu Wei. Synthesis of Cerium-containing Polymethylphenyl Silicone and Its Antioxidant Effect on Fluorosilicone Rubber[J]. Chinese Journal of Polymer Science, ;2019, 37(8): 783-789. doi: 10.1007/s10118-019-2266-4 shu

Synthesis of Cerium-containing Polymethylphenyl Silicone and Its Antioxidant Effect on Fluorosilicone Rubber

  • Corresponding author: Xiang Xu, xiangxu@ecust.edu.cn
  • Received Date: 4 January 2019
    Revised Date: 14 March 2019
    Available Online: 10 May 2019

  • As an essential elastomer used in edge technologies, fluorosilicone rubber (FSR) suffers serious oxidative ageing problem when serving at high temperature. Cerium oxide is generally used as an antioxidant additive but remains unsatisfactory. In order to obtain better antioxidant effect on improving the thermal stability of FSR, a kind of cerium-containing polymethylphenyl silicone (PSI-Ce) was synthesized and the structure was verified by Fourier-transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR). Due to the homogeneous dispersion on molecular scale, PSI-Ce imposed much better antioxidant effect than the commercial CeO2 did, no matter from isothermal degradation at 320 °C or thermal-oxidative ageing test at 230 °C. In particular, after ageing for 72 h, FSR/PSI-Ce (2 phr) maintained 82% of tensile strength and 63% of elongation at break, in comparison to the corresponding values of 48% and 42% for FSR/CeO2 (2 phr). Moreover, 2 phr PSI-Ce was equivalent to 0.046 phr CeO2 according to cerium element conservation.
  • 加载中
    1. [1]

      Zhang, X. K.; Poojari, Y.; Drechsler, L. E.; Kuo, C. M.; Fried, J. R.; Clarson, S. J. Pervaporation of organic liquids from binary aqueous mixtures using poly(trifluoropropylmethylsiloxane) and poly(dimethylsiloxane) dense membranes. J. Inorg. Organomet. Polym. Mater. 2007, 18, 246-252.

    2. [2]

      Esmizadeh, E.; Naderi, G.; Barmar, M. Effect of organo-clay on properties and mechanical behavior of fluorosilicone rubber. Fibers Polym. 2014, 15, 2376-2385.  doi: 10.1007/s12221-014-2376-0

    3. [3]

      Cypryk, M.; Delczyk, B.; Juhari, A.; Koynov, K. Controlled synthesis of trifluoropropylmethylsiloxane-dimethylsiloxane gradient copolymers by anionic ROP of cyclotrisiloxanes. J. Polym. Sci., Part A: Polym. Chem. 2009, 47, 1204-1216.  doi: 10.1002/pola.v47:4

    4. [4]

      Gao, Y.; Jiang, W.; Guan, Y.; Yang, P.; Zheng, A. N. A novel approach for anionic bulk polymerization of 1,3,5-tris(trifluoropropylmethyl)cyclotrisiloxane. Polym. Eng. Sci. 2010, 50, 2440-2447.  doi: 10.1002/pen.21690

    5. [5]

      Liu, Y.; Liu, H.; Zhang, R.; Zhou, C.; Feng, S. Preparation and properties of heat curable blended methylfluorosilicone rubber. Polym. Eng. Sci. 2013, 53, 52-58.  doi: 10.1002/pen.v53.1

    6. [6]

      Kahlig, H.; Zollner, P.; Mayer-Helm, B. X. Characterization of degradation products of poly[(3,3,3-trifluoropropyl)methylsiloxane] by nuclear magnetic resonance spectroscopy, mass spectrometry and gas chromatography. Polym. Degrad. Stab. 2009, 94, 1254-1260.  doi: 10.1016/j.polymdegradstab.2009.04.019

    7. [7]

      Xu, X.; Xu, Z.; Chen, P.; Zhou, X.; Zheng, A. N; Guan, Y. Preparation of fluorosilicone random copolymers with properties superior to those of fluorosilicone/silicone polymer blends. J. Inorg. Organomet. Polym. Mater. 2015, 25, 1267-1276.  doi: 10.1007/s10904-015-0236-z

    8. [8]

      Dai, Y.; Ruan, X.; Bai, F.; Yu, M.; Li, H.; Zhao, Z.; He, G. High solvent resistance PTFPMS/PEI hollow fiber composite membrane for gas separation. Appl. Surf. Sci. 2016, 360, 164-173.  doi: 10.1016/j.apsusc.2015.11.014

    9. [9]

      Bhuvaneswari, C. M.; Dhanasekaran, R.; Chakravarthy, S. K. R.; Kale, S. S.; Gouda, G. Evaluation of fluorosicone-silicone elastomer blend for aeronautical fuel system. Prog. Rubber Plast. Recycl. Technol. 2015, 31, 207-218.  doi: 10.1177/147776061503100305

    10. [10]

      Smitha Alex, A.; Rajeev, R. S.; Krishnaraj, K.; Sreenivas, N.; Manu, S. K.; Gouri, C.; Sekkar, V. Thermal protection characteristics of polydimethylsiloxane-organoclay nanocomposite. Polym. Degrad. Stab. 2017, 144, 281-291.  doi: 10.1016/j.polymdegradstab.2017.08.026

    11. [11]

      Camino, G.; Lomakin, S. M.; Lazzari, M. Polydimethylsiloxane thermal degradation Part 1. Kinetic aspects. Polymer 2001, 42, 2395-2402.  doi: 10.1016/S0032-3861(00)00652-2

    12. [12]

      Camino, G.; Lomakin, S. M.; Lagerad, M. Thermal polydimethylsiloxane degradation part 2. The degradation mechanisms. Polymer 2002, 43, 2011-2015.  doi: 10.1016/S0032-3861(01)00785-6

    13. [13]

      Patel, M.; Skinner, A. R. Thermal ageing studies on room-temperture vulcanised polysiloxane rubbers. Polym. Degrad. Stab. 2001, 73, 399-402.  doi: 10.1016/S0141-3910(01)00118-5

    14. [14]

      Jovanovic, J. D.; Govedarica, M. N.; Dvornic, P. R.; Popovic, I. G. The thermogravimetric analysis of some polysiloxanes. Polym. Degrad. Stab. 1998, 61, 87-93.  doi: 10.1016/S0141-3910(97)00135-3

    15. [15]

      Zhang, S.; Wang, H. Thermal degradation of amino-group-modified polydimethylsiloxane. J. Therm. Anal. Calorim. 2010, 103, 711-716.

    16. [16]

      Lewicki, J. P.; Liggat, J. J.; Patel, M. The thermal degradation behaviour of polydimethylsiloxane/montmorillonite nanocomposites. Polym. Degrad. Stab. 2009, 94, 1548-1557.  doi: 10.1016/j.polymdegradstab.2009.04.030

    17. [17]

      Liu, Y. R.; Huang, Y. D.; Liu, L. Thermal stability of POSS/methylsilicone nanocomposites. Compos. Sci. Technol. 2007, 67, 2864-2876.  doi: 10.1016/j.compscitech.2007.01.023

    18. [18]

      Zheng, A. N.; Huang, Y.; You, Y.; Hu, J.; Wei, D.; Xu, X.; Guan, Y. Boron particles acting as antioxidants for fluorosilicone rubber due to their radical scavenging activity. Polym. Degrad. Stab. 2018, 158, 168-175.  doi: 10.1016/j.polymdegradstab.2018.09.017

    19. [19]

      Guan, Y.; Yang, R.; Huang, Y.; Yu, C.; Li, X.; Wei, D.; Xu, X. Multi-walled carbon nanotubes acting as antioxidant for fluorosilicone rubber. Polym. Degrad. Stab. 2018, 156, 161-169.  doi: 10.1016/j.polymdegradstab.2018.06.018

    20. [20]

      Xu, X.; Liu, J.; Chen, P.; Wei, D.; Guan, Y.; Lu, X.; Xiao, H. The effect of ceria nanoparticles on improving heat resistant properties of fluorosilicone rubber. J. Appl. Polym. Sci. 2016, 133, 44117.

    21. [21]

      Paul, D. R.; Mark, J. E. Fillers for polysiloxane (" silicone”) elastomers. Prog. Polym. Sci. 2010, 35, 893-901.  doi: 10.1016/j.progpolymsci.2010.03.004

    22. [22]

      Li, H.; Tao, S.; Huang, Y.; Su, Z.; Zheng, J. The improved thermal oxidative stability of silicone rubber by using iron oxide and carbon nanotubes as thermal resistant additives. Compos. Sci. Technol. 2013, 76, 52-60.  doi: 10.1016/j.compscitech.2012.12.019

    23. [23]

      Zhang, X.; Zhang, Q.; Zheng, J. Effect and mechanism of iron oxide modified carbon nanotubes on thermal oxidative stability of silicone rubber. Compos. Sci. Technol. 2014, 99, 1-7.  doi: 10.1016/j.compscitech.2014.05.003

    24. [24]

      Shentu, B. Q.; Gan, T. F.; Weng, Z. X. Modification of Fe2O3 and its effect on the heat-resistance of silicone rubber. J. Appl. Polym. Sci. 2009, 113, 3202-3206.  doi: 10.1002/app.v113:5

    25. [25]

      Gan, T. F.; Shentu, B. Q.; Weng, Z. X. Modification of CeO2 and its effect on the heat-resistance of silicone rubber. Chinese J. Polym. Sci. 2008, 26, 489-494.  doi: 10.1142/S0256767908003163

    26. [26]

      Botter, W.; Ferreira Soares, R.; Galembeck, F. Interfacial reactions and self-adhesion of polydimethylsiloxanes. J. Adhes. Sci. Technol. 1992, 6, 791-805.  doi: 10.1163/156856192X00449

    27. [27]

      Sim, L. C.; Ramanan, S. R.; Ismail, H.; Seetharamu, K. N.; Goh, T. J. Thermal characterization of Al2O3 and ZnO reinforced silicone rubber as thermal pads for heat dissipation purposes. Thermochim. Acta. 2005, 430, 155-165.  doi: 10.1016/j.tca.2004.12.024

    28. [28]

      Yao, Y. Y.; Lu, G. Q.; Boroyevich, D. S.; Ngo, K. D. T. Effect of Al2O3 fibers on the high-temperature stability of silicone elastomer. Polymer 2014, 55, 4232-4240.  doi: 10.1016/j.polymer.2014.05.044

    29. [29]

      Nielsen, J. M. Oxidative stabilization of dimethyl silicone fluids with iron between 70 and 370 °C. J. Polym. Sci., Polym. Symp. 1973, 40, 189-197.

    30. [30]

      Baker, H. R.; Singleterry, C. R. Stabilization of silicone lubricating fluids above 200 °C by iron, copper, cerium, and other metal compounds. J. Chem. Eng. Data 1961, 6, 146-154.  doi: 10.1021/je60009a030

    31. [31]

      Han, W. Q.; Wu, L. J.; Zhu, Y. M. Formation and oxidation state of CeO2-x nanotubes. J. Am. Chem. Soc. 2005, 127, 12814-12815.  doi: 10.1021/ja054533p

    32. [32]

      Belyavskii, S. G.; Mingalyov, P. G.; Giulieri, F.; Combarrieau, R.; Lisichkin, G. V. Chemical modification of the surface of a carbonyl iron powder. Prot. Met. 2006, 42, 244-252.  doi: 10.1134/S0033173206030064

    33. [33]

      Ikaev, A. M.; Mingalyov, P. G.; Lisichkin, G. V. Chemical modification of iron oxide surface with organosilicon and organophosphorous compounds. Colloid J. 2007, 69, 741-746.  doi: 10.1134/S1061933X07060105

    34. [34]

      Pu, H. T.; Jiang, F. J.; Yang, Z. L. Studies on preparation and chemical stability of reduced iron particles encapsulated with polysiloxane nano-films. Mater. Lett. 2006, 60, 94-97.  doi: 10.1016/j.matlet.2005.07.079

    35. [35]

      Huang, R. H.; Wang, L.; Lin, Y.; Dong, Y.; You, D. Surface modification of carbonyl iron powders with silicone polymers in supercritical fluid to get higher dispersibility and higher thermal stability. Surf. Interface Anal. 2017, 49, 79-84.  doi: 10.1002/sia.v49.2

    36. [36]

      Li, Y. M.; Zheng, Z. M.; Xu, C. L.; Ren, C.; Zhang, Z.; Xie, Z. Synthesis of iron-containing polysilazane and its antioxidation effect on silicone oil and rubber. J. Appl. Polym. Sci. 2003, 90, 306-309.  doi: 10.1002/(ISSN)1097-4628

    37. [37]

      Cai, D.; Neyer, A.; Kuckuk, R.; Heise, H. M. Raman, mid-infrared, near-infrared and ultraviolet-visible spectroscopy of PDMS silicone rubber for characterization of polymer optical waveguide materials. J. Mol. Struct. 2010, 976, 274-281.  doi: 10.1016/j.molstruc.2010.03.054

    38. [38]

      Colthup, N. B.; Daly, L. H.; Wiberley, S. E. Introduction to infrared and Raman spectroscopy. Academic Press, San Diego, 1990, p. 355.

    39. [39]

      Sopicka-Lizer, M.; Michalik, D.; Plewa, J.; Juestel, T.; Winkler, H.; Pawlik, T. The effect of Al―O substitution for Si―N on the luminescence properties of YAG:Ce phosphor. J. Eur. Ceram. Soc. 2012, 32, 1383-1387.  doi: 10.1016/j.jeurceramsoc.2011.04.021

    40. [40]

      Selvaraj, M.; Kim, B. H.; Lee, T. G. FTIR studies on selected mesoporous metallosilicate molecular sieves. Chem. Lett. 2005, 34, 1290-1291.  doi: 10.1246/cl.2005.1290

    41. [41]

      Lin, S. L.; Hwang, C. S.; Lee, J. F. Characterization of CeO2-Al2O3-SiO2 glasses by infrared and X-ray absorption near edge structure spectroscopies. J. Mater. Res. 1996, 11, 2641-2650.  doi: 10.1557/JMR.1996.0332

    42. [42]

      Park, S. H.; Kim, B. H.; Selvaraj, M.; Lee, T. G. Synthesis and characterization of mesoporous Ce-Mn-MCM-41 molecular sieves. J. Ind. Eng. Chem. 2007, 13(4), 637-643.

    43. [43]

      Laha, S. C.; Mukherjee, P.; Sainkar, S. R.; Kumar, R. Cerium containing MCM-41-Type mesoporous materials and their acidic and redox catalytic properties. J. Catal. 2002, 207, 213-223.  doi: 10.1006/jcat.2002.3516

    44. [44]

      Radhakrishnan T S. New method for evaluation of kinetic parameters and mechanism of degradation from pyrolysis-GC studies: Thermal degradation of polydimethylsiloxanes. J. Appl. Polym. Sci. 1999, 73: 441-450.  doi: 10.1002/(ISSN)1097-4628

    45. [45]

      Korsvik, C.; Patil, S.; Seal, S.; Self, W. T. Superoxide dismutase mimetic properties exhibited by vacancy engineered ceria nanoparticles. Chem. Commun. 2007, 1056-1058.

    46. [46]

      Tarnuzzer, R. W.; Colon J.; Patil S.; Seal S. Vacancy engineered ceria nanostructures for protection from nanostructures for protection from radiation-induced cellular damage. Nano Lett. 2005, 5, 2573.  doi: 10.1021/nl052024f

    47. [47]

      Xue, Y.; Luan, Q. F.; Yang, D.; Yao, X.; Zhou, K. B. Direct evidence for hydroxyl radical scavenging activity of cerium oxide nanoparticles. J. Phys. Chem. C 2011, 115, 4433-4438.  doi: 10.1021/jp109819u

  • 加载中
    1. [1]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    2. [2]

      Bo YangPu-An LinTingwei ZhouXiaojia ZhengBing CaiWen-Hua Zhang . Facile surface regulation for highly efficient and thermally stable perovskite solar cells via chlormequat chloride. Chinese Chemical Letters, 2024, 35(10): 109425-. doi: 10.1016/j.cclet.2023.109425

    3. [3]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    4. [4]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    5. [5]

      Jingyuan YangXinyu TianLiuzhong YuanYu LiuYue WangChuandong Dou . Enhancing stability of diradical polycyclic hydrocarbons via P=O-attaching. Chinese Chemical Letters, 2024, 35(8): 109745-. doi: 10.1016/j.cclet.2024.109745

    6. [6]

      Ting WangXin YuYaqiang Xie . Unlocking stability: Preserving activity of biomimetic catalysts with covalent organic framework cladding. Chinese Chemical Letters, 2024, 35(6): 109320-. doi: 10.1016/j.cclet.2023.109320

    7. [7]

      Tao LIUYuting TIANKe GAOXuwei HANRu'nan MINWenjing ZHAOXueyi SUNCaixia YIN . A photothermal agent with high photothermal conversion efficiency and high stability for tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1622-1632. doi: 10.11862/CJIC.20240107

    8. [8]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    9. [9]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    10. [10]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    11. [11]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    12. [12]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    13. [13]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    14. [14]

      Jingxuan LiuShiqi ZhaoXiang Wu . Flexible electrochemical capacitor based NiMoSSe electrode material with superior cycling and structural stability. Chinese Chemical Letters, 2024, 35(7): 109059-. doi: 10.1016/j.cclet.2023.109059

    15. [15]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    16. [16]

      Qiyan WuRuixin ZhouZhangyi YaoTanyuan WangQing Li . Effective approaches for enhancing the stability of ruthenium-based electrocatalysts towards acidic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(10): 109416-. doi: 10.1016/j.cclet.2023.109416

    17. [17]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    18. [18]

      Jing JINZhuming GUOZhiyin XIAOXiujuan JIANGYi HEXiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458

    19. [19]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    20. [20]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

Metrics
  • PDF Downloads(0)
  • Abstract views(602)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return