Citation: Yan-Ling Mo, Yu-Xin Tian, Yu-Hang Liu, Feng Chen, Qiang Fu. Preparation and Properties of Ultrathin Flexible Expanded Graphite Film via Adding Natural Rubber[J]. Chinese Journal of Polymer Science, ;2019, 37(8): 806-814. doi: 10.1007/s10118-019-2264-6 shu

Preparation and Properties of Ultrathin Flexible Expanded Graphite Film via Adding Natural Rubber

  • Expanded graphite (EG) films exhibit potential use in a wide field including thermal management, conductive applications, and electromagnetic interference (EMI) shielding. However, their poor tensile strength and brittleness are crucial deficiencies for commercial applications. To address these defects, in our work, natural rubber (NR) is employed to improve EG films for better mechanical strength and flexibility. The origin of the strengthening effect of EG films by the addition of natural rubber mainly arises from the formation of a simulate shell structure. Compared to the neat EG films, the addition of merely 2 wt% NR can give rise to superior ductility. Further, the loading of 10 wt% NR realizes a significant mechanical enhancement of the EG/NR films, i.e., 2.4 and 11.4 times increase in tensile strength and elongation at break, respectively. Besides, EG/NR films containing 10 wt% NR can still sustain excellent thermal and electric conductivities of 173 W·m−1·K−1 and 75 S·cm−1, respectively. Furthermore, a very high EMI of 41.4 dB is achieved as the film thickness reaches 50 μm. Thus, the lightweight EG/NR films with comprehensive performance as well as their virtue of green and simple large-scale preparation endow them with the possibility of designing next-generation flexible electronics.
  • 加载中
    1. [1]

      Nika, D. L.; Balandin, A. A. Phonons and thermal transport in graphene and graphene-based materials. Rep. Prog. Phys. 2017, 80, 036502.  doi: 10.1088/1361-6633/80/3/036502

    2. [2]

      Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569-581.  doi: 10.1038/nmat3064

    3. [3]

      Kumar, P.; Shahzad, F.; Yu, S.; Hong, S. M.; Kim, Y. H.; Koo, C. M. Large-area reduced graphene oxide thin film with excellent thermal conductivity and electromagnetic interference shielding effectiveness. Carbon. 2015, 94, 494-500.  doi: 10.1016/j.carbon.2015.07.032

    4. [4]

      Renteria, J. D.; Ramirez, S.; Malekpour, H.; Alonso, B.; Centeno, A.; Zurutuza, A.; Cocemasov, A. I.; Nika, D. L.; Balandin, A. A. Strongly anisotropic thermal conductivity of free-standing reduced graphene oxide films annealed at high temperature. Adv. Funct. Mater. 2015, 25, 4664-4672.  doi: 10.1002/adfm.201501429

    5. [5]

      Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.  doi: 10.1038/nmat1849

    6. [6]

      Wang, N.; Tian, H.; Zhu, S. Y.; Yan, D, Y.; Mai, Y. Y. Two-dimensional Nitrogen-doped Mesoporous Carbon/Graphene Nanocomposites from the Self-assembly of Block Copolymer Micelles in Solution. Chinese J. Polym. Sci. 2018, 36, 266-272.  doi: 10.1007/s10118-018-2091-1

    7. [7]

      Ranjbartoreh, A. R.; Wang, B.; Shen, X.; Wang, G. Advanced mechanical properties of graphene paper. J. Appl. Phys. 2011, 109, 014306.  doi: 10.1063/1.3528213

    8. [8]

      Chen, H.; Müller, M. B.; Gilmore, K. J.; Wallace, G. G.; Li, D. Mechanically strong, electrically conductive, and biocompatible graphene paper. Adv. Mater. 2008, 20, 3557-3561.  doi: 10.1002/adma.200800757

    9. [9]

      Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442, 282-286.  doi: 10.1038/nature04969

    10. [10]

      Furio, A.; Landi, G.; Altavilla, C.; Sofia, D.; Iannace, S.; Sorrentino, A.; Neitzert, H. C. Neitzert. Light irradiation tuning of surface wettability, optical, and electric properties of graphene oxide thin films. Nanotechnology 2017, 28, 054003.

    11. [11]

      Guo, H. L.; Wang, X. F.; Qian, Q. Y.; Wang, F. B.; Xia, X. H. A green approach to the synthesis of graphene nanosheets. ACS Nano 2009, 3, 2653-2659.  doi: 10.1021/nn900227d

    12. [12]

      Li, D.; Müller, M. B.; Gilje, S.; Kaner, R. B.; Wallace, G. G. Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 2008, 3, 101-105.  doi: 10.1038/nnano.2007.451

    13. [13]

      Shen, B.; Zhai, W.; Zheng, W. Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 2014, 24, 4542-4548.  doi: 10.1002/adfm.v24.28

    14. [14]

      Liu, Z.; Li, Z.; Xu, Z.; Xia, Z.; Hu, X.; Kou, L.; Peng, L.; Wei, Y.; Gao, C. Wet-spun continuous graphene films. Chem. Mater. 2014, 26, 6786-6795.  doi: 10.1021/cm5033089

    15. [15]

      Lin, X.; Shen, X.; Zheng, Q.; Yousefi, N.; Ye, L.; Mai, Y. W.; Kim, J. K. Fabrication of highly-aligned, conductive, and strong graphene papers using ultralarge graphene oxide sheets. ACS Nano 2012, 6, 10708-10719.  doi: 10.1021/nn303904z

    16. [16]

      Teng, C.; Xie, D.; Wang, J.; Yang, Z.; Ren, G.; Zhu, Y. Ultrahigh conductive graphene paper based on ball-milling exfoliated graphene. Adv. Funct. Mater. 2017, 27, 1700240.  doi: 10.1002/adfm.v27.20

    17. [17]

      Ionov, S. G.; Avdeev, V. V.; Kuvshinnikov, S. V.; Pavlova, E. P. Physical and chemical properties of flexible graphite foils. Mol. Cryst. Liq. Cryst. Sci. Technol., Sect. A. 2000, 340, 349-354.  doi: 10.1080/10587250008025491

    18. [18]

      Lai, Q. Preparation of flexible graphite sheet with fine flake graphite. Adv. Mater. Res. 2011, 328-330, 1642-1645.  doi: 10.4028/www.scientific.net/AMR.328-330

    19. [19]

      Leng, Y.; Gu, J.; Cao, W.; Zhang, T. Y. Influences of density and flake size on the mechanical properties of flexible graphite. Carbon. 1998, 36, 875-881.  doi: 10.1016/S0008-6223(97)00196-6

    20. [20]

      Reynolds, R. A.; Greinke, R. A. Influence of expansion volume of intercalated graphite on tensile properties of flexible graphite. Carbon. 2001, 39, 479-481.  doi: 10.1016/S0008-6223(00)00291-8

    21. [21]

      Veca, L. M.; Meziani, M. J.; Wang, W.; Wang, X.; Lu, F.; Zhang, P.; Lin, Y.; Fee, R.; Connell, J. W.; Sun, Y. P. Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv. Mater. 2009, 21, 2088-2092.  doi: 10.1002/adma.v21:20

    22. [22]

      Wen, B.; Wang, X. X.; Cao, W. Q.; Shi, H. L.; Lu, M. M.; Wang, G.; Jin, H. B.; Wang, W. Z.; Yuan, J.; Cao, M. S. Reduced graphene oxides: the thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 2014, 6, 5754-5761.  doi: 10.1039/C3NR06717C

    23. [23]

      Wei, Y.; Huang, R.; Dong, P.; Qi, X. D.; Fu, Q. Preparation of polylactide/poly(ether)urethane blends with excellent electro-actuated shape memory via incorporating carbon black and carbon nanotubes hybrids fillers. Chinese J. Polym. Sci. 2018, 36, 1175-1186.  doi: 10.1007/s10118-018-2138-3

    24. [24]

      Wei, Z. B.; Zhao, Y.; Wang, C.; Kuga, S.; Huang, Y.; Wu, M. Antistatic PVC-graphene composite through plasticizer-mediated exfoliation of graphite. Chinese J. Polym. Sci. 2018, 36, 1361-1367.  doi: 10.1007/s10118-018-2160-5

    25. [25]

      Sun, C. B.; Mao, H. D.; Chen, F.; Fu, Q. Preparation of polylactide composite with excellent flame retardance and improved mechanical properties. Chinese J. Polym. Sci. 2018, 36, 1385-1393.  doi: 10.1007/s10118-018-2150-7

    26. [26]

      Pu, S. Q.; Guo, S.; Wang, K.; Fu, Q. Largely improved stretch ductility and β-form room-temperature durability of poly(vinylidene fluoride) by incorporating aliphatic polyketone. Chinese J. Polym. Sci 2018, 36, 1277-1285.  doi: 10.1007/s10118-018-2134-7

    27. [27]

      Zhu, G. L.; Han, D.; Yuan, Y.; Chen, F.; Fu, Q. Improving damping properties and thermal stability of epoxy/polyurethane grafted copolymer by adding glycidyl POSS. Chinese J. Polym. Sci 2018, 36, 1297-1302.  doi: 10.1007/s10118-018-2145-4

    28. [28]

      Cote Laura, J.; Kim, J.; Tung Vincent, C.; Luo, J.; Kim, F.; Huang, J. Graphene oxide as surfactant sheets. Pure Appl. Chem. 2010, 83(1), 95-110.  doi: 10.1351/PAC-CON-10-10-25

    29. [29]

      Liu, Y. H.; Zeng, J.; Han, D.; Wu, K.; Yu, B. W.; Chai, S. G.; Chen, F.; Fu, Q. New insight of high temperature oxidation on self-exfoliation capability of graphene oxide. Nanotechnology 2018, 29, 185601.  doi: 10.1088/1361-6528/aaaf3d

    30. [30]

      Wen, B.; Cao, M.; Lu, M.; Cao, W.; Shi, H.; Liu, J.; Wang, X.; Jin, H.; Fang, X.; Wang, W.; Yuan, J. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484-3489.  doi: 10.1002/adma.v26.21

    31. [31]

      Zeng, Z.; Chen, M.; Jin, H.; Li, W.; Xue, X.; Zhou, L.; Pei, Y.; Zhang, H.; Zhang, Z. Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 2016, 96, 768-777.  doi: 10.1016/j.carbon.2015.10.004

    32. [32]

      Wu, H. Y.; Jia, L. C.; Yan, D. X.; Gao, J. F.; Zhang, X. P.; Ren, P. G.; Li, Z. M. Simultaneously improved electromagnetic interference shielding and mechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Compos. Sci. Technol. 2018, 156, 87-94.  doi: 10.1016/j.compscitech.2017.12.027

    33. [33]

      Thomassin, J. M.; Jerome, C.; Pardoen, T.; Bailly, C.; Huynen, I.; Detrembleur, C. Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. Rep. 2013, 74, 211-232.  doi: 10.1016/j.mser.2013.06.001

    34. [34]

      Bernal, M. M.; Di Pierro, A.; Novara, C.; Giorgis, F.; Mortazavi, B.; Saracco, G.; Fina, A. Edge-grafted molecular junctions between graphene nanoplatelets: Applied chemistry to enhance heat transfer in nanomaterials. Adv. Funct. Mater. 2018, 28, 1706954.  doi: 10.1002/adfm.v28.18

    35. [35]

      Zhang, Y.; Edwards, M.; Samani, M. K.; Logothetis, N.; Ye, L.; Fu, Y.; Jeppson, K.; Liu, J. Characterization and simulation of liquid phase exfoliated graphene-based films for heat spreading applications. Carbon 2016, 106, 195-201.  doi: 10.1016/j.carbon.2016.05.014

    36. [36]

      Pei, S.; Cheng, H. M. The reduction of graphene oxide. Carbon 2012, 50, 3210-3228.  doi: 10.1016/j.carbon.2011.11.010

    37. [37]

      Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z.; McGovern, I. T.; Duesberg, G. S.; Coleman, J. N. Liquid phase production of graphene by exfoliation of graphite in surfactant/water solutions. J. Am. Chem. Soc. 2009, 131, 3611-3620.  doi: 10.1021/ja807449u

    38. [38]

      Yang, W. X.; Zhang, Y.; Liu, T. Y.; Huang, R.; Chai, S. G.; Chen, F.; Fu, Q. Completely green approach for the preparation of strong and highly conductive graphene composite film by using nanocellulose as dispersing agent and mechanical compression. ACS Sustain. Chem. Eng. 2017, 5, 9102-9113.  doi: 10.1021/acssuschemeng.7b02012

    39. [39]

      Wu, H.; Drzal, L. T. Graphene nanoplatelet paper as a light-weight composite with excellent electrical and thermal conductivity and good gas barrier properties. Carbon 2012, 50, 1135-1145.  doi: 10.1016/j.carbon.2011.10.026

    40. [40]

      Hamilton, C. E.; Lomeda, J. R.; Sun, Z.; Tour, J. M.; Barron, A. R. High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 2009, 9, 3460-3462.  doi: 10.1021/nl9016623

  • 加载中
    1. [1]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    2. [2]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    3. [3]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

    4. [4]

      Xiaoliu LiangChunliu HuangHui LiuHu ChenJiabao ShouHongwei ChengGang Liu . Natural hydrogel dressings in wound care: Design, advances, and perspectives. Chinese Chemical Letters, 2024, 35(10): 109442-. doi: 10.1016/j.cclet.2023.109442

    5. [5]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    6. [6]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    7. [7]

      Jia ChenYun LiuZerong LongYan LiHongdeng Qiu . Colorimetric detection of α-glucosidase activity using Ni-CeO2 nanorods and its application to potential natural inhibitor screening. Chinese Chemical Letters, 2024, 35(9): 109463-. doi: 10.1016/j.cclet.2023.109463

    8. [8]

      Deli ChenJiawen LiXudong XuZhaocui SunYun YangMinghui XuHanqiao LiangJunshan YangHui MengGuoxu MaJianhe Wei . Plant-microbial interactions inspired the discovery of novel sesquiterpenoid dimeric skeletons of hidden natural products from Hibiscus tiliaceus. Chinese Chemical Letters, 2024, 35(10): 109451-. doi: 10.1016/j.cclet.2023.109451

    9. [9]

      Ying GaoRong ZhouQiwen WangShaolong QiYuanyuan LvShuang LiuJie ShenGuocan Yu . Natural killer cell membrane doped supramolecular nanoplatform with immuno-modulatory functions for immuno-enhanced tumor phototherapy. Chinese Chemical Letters, 2024, 35(10): 109521-. doi: 10.1016/j.cclet.2024.109521

    10. [10]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    11. [11]

      Tsegaye Tadesse Tsega Jiantao Zai Chin Wei Lai Xin-Hao Li Xuefeng Qian . Earth-abundant CuFeS2 nanocrystals@graphite felt electrode for high performance aqueous polysulfide/iodide redox flow batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100192-100192. doi: 10.1016/j.cjsc.2023.100192

    12. [12]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    13. [13]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    14. [14]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    15. [15]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    16. [16]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    17. [17]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    18. [18]

      Miaomiao LiMengwei YuanXingzi ZhengKunyu HanGenban SunFujun LiHuifeng Li . Highly polar CoP/Co2P heterojunction composite as efficient cathode electrocatalyst for Li-air battery. Chinese Chemical Letters, 2024, 35(9): 109265-. doi: 10.1016/j.cclet.2023.109265

    19. [19]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    20. [20]

      Zeyu XUTongzhou LUHaibo SHAOJianming WANG . Preparation and electrochemical lithium storage performance of porous silicon microsphere composite with metal modification and carbon coating. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1995-2008. doi: 10.11862/CJIC.20240164

Metrics
  • PDF Downloads(0)
  • Abstract views(642)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return