Citation: A. Andriianova, A. Shigapova, Y. Biglova, R. Salikhov, I. Abdrakhmanov, A. Mustafin. Synthesis and Physico-chemical Properties of (Co)polymers of 2-[(2E)-1-methyl-2-buten-1-yl]aniline and Aniline[J]. Chinese Journal of Polymer Science, ;2019, 37(8): 774-782. doi: 10.1007/s10118-019-2261-9 shu

Synthesis and Physico-chemical Properties of (Co)polymers of 2-[(2E)-1-methyl-2-buten-1-yl]aniline and Aniline

  • Corresponding author: A. Andriianova, an.chem17@gmail.com
  • Received Date: 16 January 2019
    Revised Date: 1 March 2019
    Available Online: 8 May 2019

  • A new soluble polymer on 2-[(2E)-1-methyl-2-buten-1-yl]aniline and its copolymers with aniline basis have been synthesized in various molar ratios. For all samples, the electrical conductivity, morphology, solubility, electrochemical properties, as well as spectral and molecular mass characteristics have been studied, and a comparative analysis with polyaniline has been carried out. The substituent introduced into the aniline aromatic ring significantly improves the solubility in typical organic solvents of a high molecular weight product. The morphology of the test compounds depends on the co-monomer ratio. As the content of the substituted aniline in the initial mixture increases, the morphology of the polymer changes from the inherent polyaniline fibrous microstructure to the globular one with irregular substituted polyaniline shapes and sizes. Electrochemical study of the samples revealed that the higher the oxidation potential, the wider the band gap (ranging from 2.00 to 2.15). The electrical conductivity decreases in proportion to the increase in the substituted aniline concentration of the initial co-monomer mixture and amounts to 12.5–35.7 × 106 nSm.
  • 加载中
    1. [1]

      Jarjes, Z.; Samian, M.; AbGhani, S. Conductive polymers: Their preparations and catalyses on NADH oxidation at carbon cloth electrodes. Arab. J. Chem. 2015, 5, 726-731. DOI: 10.1016/j.arabjc.2013.05.021.  doi: 10.1016/j.arabjc.2013.05.021

    2. [2]

      Long, Y.; Li, M.; Gu, C.; Wan, M.; Duvail, J.; Liu, Z.; Fan, Z. Recent advances in synthesis, physical properties and applications of conducting polymer nanotubes and nanofibers. Prog. Polym. Sci. 2011, 36, 1415-1442. DOI: 10.1016/j.progpolymsci.2011.04.001.  doi: 10.1016/j.progpolymsci.2011.04.001

    3. [3]

      Salikhov, R.; Biglova, Y.; Mustafin, A. New organic polymers for solar cells. In Emerging solar energy materials. ed. by Sadia Ameen. IntechOpen 2018, 83−104.

    4. [4]

      Nicolas-Debarnot, D.; Poncin-Epaillard, F. Polyaniline as a new sensitive layer for gas sensors. Anal. Chim. Acta. 2003, 475, 1-15.  doi: 10.1016/S0003-2670(02)01229-1

    5. [5]

      Stejskal, J.; Sapurina, I.; Trchova, M. Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog. Polym. Sci. 2010, 35, 1420-1481. DOI: 10.1016/j.progpolymsci.2010.07.006.  doi: 10.1016/j.progpolymsci.2010.07.006

    6. [6]

      Bhadra, S.; Khastgir, D.; Singha, N. K., Lee, J. H. Progress in preparation, processing and applications of polyaniline. Prog. Polym. Sci. 2009, 34, 783-810. DOI: 10.1016/j.progpolymsci.2009.04.003.  doi: 10.1016/j.progpolymsci.2009.04.003

    7. [7]

      Ćirić-Marjanović, G. Recent advances in polyaniline research: Polymerization mechanisms, structural aspects, properties and applications. Synth. Met. 2013, 177, 1-47. DOI: 10.1016/j.synthmet.2013.06.004.  doi: 10.1016/j.synthmet.2013.06.004

    8. [8]

      Vivekanandan, J.; Ponnusamy, V.; Mahudeswaran, A.; Vijayanand, P. Synthesis and characterization and conductivity study of polyaniline by chemical oxidative and electrochemical methods. Arch. Appl. Sci. Res, 2011, 3, 147-153.

    9. [9]

      Verma, D.; Dutta, V., Role of novel microstructure of polyaniline-CSA thin film in ammonia sensing at room temperature. Sens. Actuat. B: Chem. 2008, 134, 373-376. DOI: 10.1016/j.snb.2008.05.009.  doi: 10.1016/j.snb.2008.05.009

    10. [10]

      Shakoor, A.; Rizvi, T.; Sulaiman, M.; Nasir, M.; Ishtiaq, M. Electronic properties of aniline doped with dodecylbenzenesulphonic acid (PANI-DBSA) and poly(methyl methacrylate) (PMMA) blends in the presence of hydroquinone. J. Mater. Sci.: Mater. Electron. 2010, 21, 603-607. DOI 10.1007/s10854-009-9964-6.  doi: 10.1007/s10854-009-9964-6

    11. [11]

      Im, S.; Han, M.; Cho, S.; Oh, S. Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synth. Met., 2002, 126, 53-60.. DOI: 10.1016/S0379-6779(01)00494-5.  doi: 10.1016/S0379-6779(01)00494-5

    12. [12]

      Liu, J.; Hu, X.; Wang, X.; Yao, J.; Sun, D.; Fan, Z.; Guo, M. Facile synthesis of hollow microspheres of polyaniline using poly(sodium 4-styrenesulfonic acid) as dopant. Polym. Int., 2014, 63, 722-726. DOI: 10.1002/pi.4578.  doi: 10.1002/pi.4578

    13. [13]

      Summers, G.; Waware, U.; Maduwa, M., Conducting polyaniline nanorods doped with aromatic carboxyl chain end functionalized polymers. Synth. Met. 2015, 209, 251-261. DOI: 10.1016/j.synthmet.2015.07.026.  doi: 10.1016/j.synthmet.2015.07.026

    14. [14]

      Kabomo, T.; Scurrell, M. The effects of ring substituents in aniline on the reactivity of PANI with hydrogen tetrachloroaurate and the dispersion of gold nanoparticles. Polym. Adv. Technol. 2016, 27, 759-764. DOI: 10.1002/pat.3709.  doi: 10.1002/pat.3709

    15. [15]

      Khamngoen, K.; Paradee, N.; Sirivat, A. Chemical oxidation polymerization and characterization of poly ortho-anisidine nanoparticles. J. Polym. Res. 2016, 23, 172.  doi: 10.1007/s10965-016-1073-7

    16. [16]

      Liu, Y.; Li, S.; Yao, P.; Zhang, Q. Synthesis of organic soluble poly(substituted-aniline) from 2-methyl-6-ethylaniline tar. Int. J. Mod. Phys. B, 2017, 31, 1744091.  doi: 10.1142/S021797921744091X

    17. [17]

      Barbero, C.; Salavagione, H.; Acevedo, D.; Grumelli, D.; Garay, F.; Planes, G.; Miras, M. Novel synthetic methods to produce functionalized conducting polymers I. Polyanilines. Electrochim. Acta 2004, 49, 3671-3686. DOI: 10.1016/j.electacta.2003.11.035.  doi: 10.1016/j.electacta.2003.11.035

    18. [18]

      Waware, U.; Hamouda, A. M. S.; Rashid, M.; Summers, G. , The spectral and morphological studies of the conductive polyaniline thin film derivatives by the in situ copolymerization. J. Mater. Sci-Mater. El. 2017, 28, 15178-15183. DOI 10.1007/s10854-017-7395-3.  doi: 10.1007/s10854-017-7395-3

    19. [19]

      Thota, A.; Arukula, R.; Narayan, R.; Rao, C.; Raju, K. V. S. N. Energy storage and surface protection properties of dianiline co-polymers. RSC Adv., 2015, 5, 106523-106535.  doi: 10.1039/C5RA11731C

    20. [20]

      Tran, H.; D'Arcy, J.; Wang, Y.; Beltramo, P.; Strong, V.; Kaner, R. The oxidation of aniline to produce " polyaniline”: a process yielding many different nanoscale structures. J. Mater. Chem. 2011, 21, 3534-3550. DOI:10.1039/C0JM02699A.  doi: 10.1039/C0JM02699A

    21. [21]

      Waware, U.; Summers, G.; Hamouda, A. M. S.; Rashid, M. Synthesis and characterization of polyaniline, poly(3-fluoroaniline), and poly (aniline-co-3-fluoroaniline) derivatives obtained by chemical oxidative polymerization methods. Polym. Plast. Technol. Eng. 2017, 57, 1-11.

    22. [22]

      Movahedifar, F.; Modarresi‐Alam, A. The effect of initiators and oxidants on the morphology of poly[(±)‐2‐(sec‐butyl) aniline] a chiral bulky substituted polyaniline derivative. Polym. Adv. Technol. 2016, 27, 131-139. DOI: 10.1002/pat.3614.  doi: 10.1002/pat.3614

    23. [23]

      Teasdale, P.; Spinks, G.; Kane-Maguire, L.; Wallace, G. Conductive electroactive polymers: Intelligent polymer systems. in Conductive electroactive polymers: Intelligent polymer systems, CRC, New York, 2008.

    24. [24]

      Ortega, E.; Armijo, F.; Jessop, I.; Del Valle, M. A.; Díaz, F. R. Chemical synthesis and characterization of polyaniline derivatives: substituent effect on solubility and conductivity. J. Chil. Chem. Soc. 2013, 58, 1959-1962. DOI: 10.4067/S0717-97072013000400010.  doi: 10.4067/S0717-97072013000400010

    25. [25]

      Biglova, Yu.; Salikhov, R.; Abdrakhmanov, I.; Salikhov, T.; Safargalin, I.; Mustafin, A. Preparation and investigation of soluble functionalized polyanilines. Phys. Solid State 2017, 59, 1228-1233. DOI: 10.1134/S106378341706004X.  doi: 10.1134/S106378341706004X

    26. [26]

      Salavagione, H. Preparation and characterization of " clickable” polyaniline derivatives on graphene modified electrodes. J. Electroanal. Chem. 2016, 765, 118-125. DOI: 10.1016/j.jelechem.2015.07.037.  doi: 10.1016/j.jelechem.2015.07.037

    27. [27]

      Abdrakhmanov, I.; Mustafin, A.; Sharafutdinov, V. Claisen rearrangement in the series of aromatic amines, Gilem, Ufa, 2014.

    28. [28]

      Cope, A.; Hardy, E. The introduction of substituted vinyl groups. V. A rearrangement involving the migration of an allyl group in a three-carbon system. J. Am. Chem. Soc. 1940, 62, 441-444. DOI: 10.1021/ja01859a055.  doi: 10.1021/ja01859a055

    29. [29]

      Abdrakhmanov, I.; Sharafutdinov, V. M.; Tolstikov, G. A. Amino-Kleisen rearrangement as a method for the synthesis of C-cycloalkanilanilines. Bull. Russ. Acad. Sci.: Chem. 1982, 9, 2160.

    30. [30]

      Gvozdenović, M.; Jugović, B.; Stevanović, J.; Grgur, B. Electrochemical synthesis of electroconducting polymers. Hem. Ind. 2014, 68, 673-684. DOI: 10.2298/HEMIND131122008G.  doi: 10.2298/HEMIND131122008G

    31. [31]

      Aprano, G.; Leclerc, M.; Zotti, G. Steric and electronic effects in methyl and methoxy substituted polyanilines. J. Electroanal. Chem. 1993, 351, 145-158. DOI: 10.1016/0379-6779(93)90279-6.  doi: 10.1016/0379-6779(93)90279-6

    32. [32]

      Aprano, G.; Leclerc, M.; Zotti, G.; Schiavon, G. Synthesis and characterization of polyaniline derivatives: poly(2-alkoxyanilines) and poly(2,5-dialkoxyanilines). Chem. Mater. 1995, 7, 33-42. DOI: 10.1021/cm00049a008.  doi: 10.1021/cm00049a008

    33. [33]

      Wei, Y.; Focke, W.; Wnek, G.; Ray, A.; MacDiarmid, A. Synthesis and electrochemistry of alkyl ring-substituted polyanilines. J. Phys. Chem. 1989, 93, 495-499. DOI: 10.1021/j100338a095.  doi: 10.1021/j100338a095

    34. [34]

      Aymen, M.; Sami, S.; Ahmed, S.; Fethi, G.; Abdellatif, B., Correlation between Raman spectroscopy and electrical conductivity of graphite/polyaniline composites reacted with hydrogen peroxide. J. Phys. D: Appl. Phys. 2013, 46, 335103. DOI: 10.1088/0022-3727/46/33/335103.  doi: 10.1088/0022-3727/46/33/335103

    35. [35]

      Barbero, C.; Miras, M.; Haas, O.; Kötz, R. Direct in situ evidence for proton/anion exchange in polyaniline films by means of probe beam deflection. J. Electrochem. Soc., 1991, 138, 669-672. DOI: 10.1149/1.2085655.  doi: 10.1149/1.2085655

    36. [36]

      Lindfors, T.; Ivaska, A. pH sensitivity of polyaniline and its substituted derivatives. J. Electroanal. Chem. 2002, 531, 43-52. DOI: 10.1016/S0022-0728(02)01005-7.  doi: 10.1016/S0022-0728(02)01005-7

  • 加载中
    1. [1]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    2. [2]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    3. [3]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    4. [4]

      Hai-Yang SongJun JiangYu-Hang SongMin-Hang ZhouChao WuXiang ChenWei-Min He . Supporting-electrolyte-free electrochemical [2 + 2 + 1] annulation of benzo[d]isothiazole 1,1-dioxides, N-arylglycines and paraformaldehyde. Chinese Chemical Letters, 2024, 35(6): 109246-. doi: 10.1016/j.cclet.2023.109246

    5. [5]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    6. [6]

      Zhe LiPing-Zhao LiangLi XuFei-Yu YangTian-Bing RenLin YuanXia YinXiao-Bing Zhang . Three positive charge nonapoptotic-induced photosensitizer with excellent water solubility for tumor therapy. Chinese Chemical Letters, 2024, 35(8): 109190-. doi: 10.1016/j.cclet.2023.109190

    7. [7]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    8. [8]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    9. [9]

      Ze-Yuan MaMei XiaoCheng-Kun LiAdedamola ShoberuJian-Ping ZouS-(1,3-Dioxoisoindolin-2-yl)O,O-diethyl phosphorothioate (SDDP): A practical electrophilic reagent for the phosphorothiolation of electron-rich compounds. Chinese Chemical Letters, 2024, 35(5): 109076-. doi: 10.1016/j.cclet.2023.109076

    10. [10]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    11. [11]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    12. [12]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    13. [13]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    14. [14]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

    15. [15]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    16. [16]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    17. [17]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    18. [18]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    19. [19]

      Tinghui Yang Min Kuang Jianping Yang . Mesoporous CuCe dual-metal catalysts for efficient electrochemical reduction of CO2 to methane. Chinese Journal of Structural Chemistry, 2024, 43(8): 100350-100350. doi: 10.1016/j.cjsc.2024.100350

    20. [20]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

Metrics
  • PDF Downloads(0)
  • Abstract views(550)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return