Analysis of Dimer Impurity in Polyamidoamine Dendrimer Solutions by Small-angle Neutron Scattering
- Corresponding author: Tian-Fu Li, litianfu.li@163.com Yi-Yun Cheng, yycheng@mail.ustc.edu.cn
Citation: Tian-Fu Li, Yi-Yun Cheng, Yu Wang, Hui Wang, Dong-Feng Chen, Yun-Tao Liu, Li Zhang, Wen-Ze Han, Rong-Deng Liu, Zi-Jun Wang, Chun-Ming Yang, Charl J. Jafta, Daniel Clemens, Uwe Keiderling. Analysis of Dimer Impurity in Polyamidoamine Dendrimer Solutions by Small-angle Neutron Scattering[J]. Chinese Journal of Polymer Science, ;2019, 37(8): 827-833. doi: 10.1007/s10118-019-2260-x
Tomalia, D. A.; Khanna, S. N. A Systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta-atoms, new emerging properties, periodic property patterns, and predictive mendeleev-like nanoperiodic tables. Chem. Rev. 2016, 116, 2705-2774.
doi: 10.1021/acs.chemrev.5b00367
Tomalia, D. A. Birth of a new macromolecular architecture: Dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog. Polym. Sci. 2005, 30, 294-324.
doi: 10.1016/j.progpolymsci.2005.01.007
Tomalia, D. A. Interview: An architectural journey: from trees, dendrons/dendrimers to nanomedicine. Nanomedicine 2012, 7, 953-956.
doi: 10.2217/nnm.12.81
Zhao, L.; Wu, Q.; Cheng, Y.; Zhang, J.; Wu, J.; Xu, T. High-throughput screening of dendrimer-binding drugs. J. Am. Chem. Soc. 2010, 132, 13182-13184.
doi: 10.1021/ja106128u
Wang, H.; Huang, Q.; Chang, H.; Xiao, J.; Cheng, Y. Stimuli-responsive dendrimers in drug delivery. Biomater. Sci. 2016, 4, 375-390.
doi: 10.1039/C5BM00532A
Hu, J.; Xu, T.; Cheng, Y. NMR insights into dendrimer-based host-guest systems. Chem. Rev. 2012, 112, 3856-3891.
doi: 10.1021/cr200333h
Svenson, S.; Tomalia, D. A. Dendrimers in biomedical applications−reflections on the field. Adv. Drug Deliv. Rev. 2005, 57, 2106-2129.
doi: 10.1016/j.addr.2005.09.018
Wang, H.; Wang, Y.; Wang, Y.; Hu, J.; Li, T.; Liu, H.; Zhang, Q.; Cheng, Y. Self-assembled fluorodendrimers combine the features of lipid and polymeric vectors in gene delivery. Angew. Chem. Int. Ed. 2015, 54, 11647-11651.
doi: 10.1002/anie.201501461
Wang, M.; Liu, H.; Li, L.; Cheng, Y. A fluorinated dendrimer achieves excellent gene transfection efficacy at extremely low nitrogen to phosphorus ratios. Nat. Commun. 2014, 5, 3053.
doi: 10.1038/ncomms4053
Cheng, Y. Fluorinated polymers in gene delivery. Acta Polymerica Sinica 2017, 8, 1234-1245.
Kallos, G. J.; Tomalia, D. A.; Hedstrand, D. M.; Lewis, S.; Zhou, J. Molecular weight determination of a polyamidoamine starburst polymer by electrospray ionization mass spectrometry. Rapid Commun. Mass Spectrom. 1991, 5, 383-386.
doi: 10.1002/(ISSN)1097-0231
Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. A New class of polymers: starburst-dendritic macromolecules. Polym. J. 1985, 17, 117-132.
doi: 10.1295/polymj.17.117
Tolic, L. P.; Anderson, G. A.; Smith, R. D.; Brothers, H. M.; Spindler, R.; Tomalia, D. A. Electrospray ionization fourier transform ion cyclotron resonance mass spectrometric characterization of high molecular mass StarburstTM dendrimers. Int. J. Mass Spectrom. 1997, 165/166, 405-418.
doi: 10.1016/S0168-1176(97)00161-4
Peterson, J.; Allikmaa, V.; Subbi, J.; Pehk, T.; Lopp, M. Structural deviations in poly(amidoamine) dendrimers: A MALDI-TOF MS analysis. Eur. Polym. J. 2003, 39, 33-42.
doi: 10.1016/S0014-3057(02)00188-X
Aura, T.; Ungaro, R.; Liu, X.; Chen, C.; Giordano, L.; Peng, L.; Charles, L. Structural characterization of new defective molecules in poly(amidoamide) dendrimers by combining mass spectrometry and nuclear magnetic resonance. Anal. Chim. Acta 2015, 853, 451-459.
doi: 10.1016/j.aca.2014.10.048
Mohammad, T. I.; Shi, X.; Balogh, L.; Baker, J. R. HPLC Separation of different generations of poly(amidoamine) dendrimers modified with various terminal groups. Anal. Chem. 2005, 77, 2063-2070.
doi: 10.1021/ac048383x
Mullen, D. G.; Desai, A.; van Dongen, M. A.; Barash, M.; Baker, J. R.; Banaszak Holl, M. M. Best practices for purification and characterization of PAMAM dendrimer. Macromolecules 2012, 45, 5316.
doi: 10.1021/ma300485p
van Dongen, M. A.; Desai, A.; Orr, B. G.; Baker, J. R.; Banaszak Hol, M. M. Quantitative analysis of generation and branch defects in g5 poly(amidoamine) dendrimer. Polymer 2013, 54, 4126-4133.
doi: 10.1016/j.polymer.2013.05.062
Likos, C. N. Soft matter with soft particles. Soft Matter 2006, 2, 478-498.
doi: 10.1039/b601916c
Caminade, A. M.; Laurent, R.; Majoral, J. P. Characterization of dendrimers. Adv. Drug Deliv. Rev. 2005, 57, 2130-2146.
doi: 10.1016/j.addr.2005.09.011
Wang, X.; Guerrand, L.; Wu, B.; Li, X.; Boldon, L.; Chen, W. R. Liu, L. Characterizations of polyamidoamine dendrimers with scattering techniques. Polymers 2012, 4, 600-616.
doi: 10.3390/polym4010600
Topp, A.; Bauer, B. J.; Kilmash, K. W.; Spindler, R.; Tomalia, D. A.; Amis, E. J. Effect of solvent quality on the molecular dimensions of PAMAM dendrimers. Macromolecules 1999, 32, 7226-7231.
doi: 10.1021/ma990125s
Imae, T.; Funayama, K.; Aoi, K.; Tsutsumiuchi, K.; Okada, M.; Furusaka, M. Small-angle neutron scattering and surface force investigations of poly(amido amine) dendrimer with hydroxyl end groups. Langmuir 1999, 15, 4076-4084.
doi: 10.1021/la9811968
Pötschke, D.; Ballauff, M.; Lindner, P.; Fischer, M.; Vögtle, F. Analysis of the structure of dendrimers in solution by small-angle neutron scattering including contrast variation. Macromolecules 1999, 32, 4079-4087.
doi: 10.1021/ma982027x
Rosenfeldt, S.; Dingenouts, N.; Ballauff, M.; Werner, N.; Vögtle, F.; Lindner, P. Distribution of end groups within a dendritic structure: A SANS study including contrast variation. Macromolecules 2002, 35, 8098-8105.
doi: 10.1021/ma020585c
Rathgeber, S.; Monkenbusch, M.; Kreitschmann, M.; Urban, V.; Brulet, A. Dynamics of star-burst dendrimers in solution in relation to their structural properties. J. Chem. Phys. 2002, 117, 4047-4062.
doi: 10.1063/1.1493771
Huang, Q. R.; Dubin, P. L.; Lal, J.; Moorefield, C. N.; Newkome, G. R. Small-angle neutron scattering studies of charged carboxyl-terminated dendrimers in solutions. Langmuir 2005, 21, 2737-2742.
doi: 10.1021/la048207j
Porcar, L.; Liu, Y.; Verduzco, R.; Hong, K.; Butler, P. D.; Magid, L. J.; Smith, G. S.; Chen, W. R. Structural investigation of PAMAM dendrimers in aqueous solutions using small-angle neutron scattering: effect of generation. J. Phys. Chem. B 2008, 112, 14772-14778.
doi: 10.1021/jp805297a
Li, T.; Shao, N.; Liu, Y.; Hu, J.; Wang, Y.; Zhang, L.; Wang, H.; Chen, D.; Cheng, Y. Poly(amidoamine) and poly(propyleneimine) dendrimers show distinct binding behaviors with sodium dodecyl sulfate: insights from SAXS and NMR analysis. J. Phys. Chem. B 2014, 118, 3074-3084.
doi: 10.1021/jp412660p
Li, T.; Hong, K.; Porcar, L.; Verduzco, R.; Butler, P. D.; Smith, G. S.; Liu, Y.; Chen, W. R. Assess the intramolecular cavity of a PAMAM dendrimer in aqueous solution by small-angle neutron scattering. Macromolecules 2008, 41, 8916-8920.
doi: 10.1021/ma801555j
Chen, W. R.; Porcar, L.; Liu, Y.; Butler, P. D.; Magid, L. J. Small-angle neutron scattering studies of the counterion effects on the molecular conformation and structure of charged G4 PAMAM dendrimers in aqueous solutions. Macromolecules 2007, 40, 5887-5898.
doi: 10.1021/ma0626564
Keiderling, U.; Wiedenmann, A. New SANS instrument at the BerII Reactor in Berlin, Germany. Physica B 1995, 213/214, 895-897.
doi: 10.1016/0921-4526(95)00316-2
Helmholtz-Zentrum Berlin für Materialien und Energie. V4: The Small-Angle Scattering Instrument (SANS) at BER II. Journal of large-scale research facilities 2016, 2, A97. http://dx.doi.org/10.17815/jlsrf-2-101.
doi: 10.17815/jlsrf-2-101
Keiderling, U. The new ‘BerSANS-PC’ software for reduction and treatment of small-angle neutron scattering data. Appl. Phys. A 2002, 74, 1455-1457.
doi: 10.1007/s003390201561
Glatter, O. A new method for the evaluation of small-angle scattering data. J. Appl. Cryst. 1977, 10, 415-421.
doi: 10.1107/S0021889877013879
Svergun, D. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. J. Appl. Cryst. 1992, 25, 495-503.
doi: 10.1107/S0021889892001663
Chen, S. H. Small-angle neutron scattering studies of the structure and interaction in micellar and microemulsion systems. Annu. Rev. Phys. Chem. 1986, 37, 351-399.
doi: 10.1146/annurev.pc.37.100186.002031
Guinier, A.; Fournet, G. Small-angle scattering of X-rays. John Wiley & Sons, New York, 1955, p. 1−78.
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
Jie Ren , Hao Zong , Yaqun Han , Tianyi Liu , Shufen Zhang , Qiang Xu , Suli Wu . Visual identification of silver ornament by the structural color based on Mie scattering of ZnO spheres. Chinese Chemical Letters, 2024, 35(9): 109350-. doi: 10.1016/j.cclet.2023.109350
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
Kuan Deng , Fei Yang , Zhi-Qi Cheng , Bi-Wen Ren , Hua Liu , Jiao Chen , Meng-Yao She , Le Yu , Xiao-Gang Liu , Hai-Tao Feng , Jian-Li Li . Construction of wavelength-tunable DSE quinoline salt derivatives by regulating the hybridization form of the nitrogen atom and intramolecular torsion angle. Chinese Chemical Letters, 2024, 35(10): 109464-. doi: 10.1016/j.cclet.2023.109464
Kun Zhang , Ni Dan , Dan-Dan Ren , Ruo-Yu Zhang , Xiaoyan Lu , Ya-Pan Wu , Li-Lei Zhang , Hong-Ru Fu , Dong-Sheng Li . A small D-A molecule with highly heat-resisting room temperature phosphorescence for white emission and anti-counterfeiting. Chinese Journal of Structural Chemistry, 2024, 43(3): 100244-100244. doi: 10.1016/j.cjsc.2024.100244
Aolei Tan , Xiaoxiao Ma . Exploring the functional roles of small-molecule metabolites in disease research: Recent advancements in metabolomics. Chinese Chemical Letters, 2024, 35(8): 109276-. doi: 10.1016/j.cclet.2023.109276