Citation: Xiao-Cheng Wang, Shi-Xin Zhou, Lan Ding, Yu-Han Zhao, Shen-Xi Min, Bin Dong, Bo Song. Controllable Emission via Tuning the Size of Fluorescent Nano-probes Formed by Polymeric Amphiphiles[J]. Chinese Journal of Polymer Science, ;2019, 37(8): 767-773. doi: 10.1007/s10118-019-2256-6 shu

Controllable Emission via Tuning the Size of Fluorescent Nano-probes Formed by Polymeric Amphiphiles

  • Corresponding author: Bo Song, songbo@suda.edu.cn
  • Received Date: 28 January 2019
    Revised Date: 1 January 2019
    Available Online: 24 April 2019

  • Incorporating fluorophores into polymeric nanoparticles has been testified as a feasible way to improve the emitting property and bio-compatibility of nano-emitters, which can be applied as fluorescent probes in labeling cells for imaging. Plenty of efforts have been made on the above direction. However, the size effect of nano-emitters has not been addressed yet mainly given the difficulties in controlling morphology and size of the assemblies. In our preceding study, we employed post-polymerization modification method for preparing amphiphilic copolymers, and obtained core-shell (the hydrophobic fluorophores are wrapped inside the nanoparticle to form the core) assemblies in aqueous solution. By this method, we are able to regulate the ratio of the hydrophilic/hydrophobic moieties, and thus alternate the size of the assemblies in a rather simple way. In this study, we synthesized a series of random copolymers by changing the ratio of poly(ethylene glycol) to tetraphenylethylene groups. Notably, the number of repeating units of the polymer was controlled constant for all the copolymers. The self-assembly of these copolymers resulted in different sizes of nanoparticles, and the size decreased with the decreasing fraction of poly(ethylene glycol). Interestingly, the emission of the nanoparticles showed size dependence, and smaller diameter corresponded to stronger emission. Being cultured with HeLa cells, either the large (diameter of ~300 nm) or the small (diameter of ~180 nm) nano-emitters allowed for very high cell viabilities up to 25 μg·mL−1. Both of them can be applied in cell imaging and provide high contrast fluorescent images.
  • 加载中
    1. [1]

      Jin, W. J.; Costa-Fernández, J. M.; Pereiro, R.; Sanz-Medel, A. Surface-modified CdSe quantum dots as luminescent probes for cyanide determination. Anal. Chim. Acta. 2004, 522, 1-8.  doi: 10.1016/j.aca.2004.06.057

    2. [2]

      Gao, X.; Yang, L.; Petros, J. A.; Marshall, F. F.; Simons, J. W.; Nie, S. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol. 2005, 16, 63-72.  doi: 10.1016/j.copbio.2004.11.003

    3. [3]

      Zrazhevskiy, P.; Sena, M.; Gao, X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 2010, 39, 4326-4354.  doi: 10.1039/b915139g

    4. [4]

      Dubertret, B.; Skourides, P.; Norris, D. J.; Noireaux, V.; Brivanlou, A. H.; Libchaber, A. In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 2002, 298, 1759.  doi: 10.1126/science.1077194

    5. [5]

      Fernández-Suárez, M.; Ting, A. Y. Fluorescent probes for super-resolution imaging in living cells. Nat. Rev. Mol. Cell Biol. 2008, 9, 929-943.  doi: 10.1038/nrm2531

    6. [6]

      Zhang, J.; Campbell, R. E.; Ting, A. Y.; Tsien, R. Y. Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell Biol. 2002, 3, 906-918.  doi: 10.1038/nrm976

    7. [7]

      Iino, R.; Koyama, I.; Kusumi, A. Single molecule imaging of green fluorescent proteins in living cells: E-cadherin forms oligomers on the free cell surface. Biophys. J. 2001, 80, 2667-2677.  doi: 10.1016/S0006-3495(01)76236-4

    8. [8]

      Nagai, T.; Ibata, K.; Park, E. S.; Kubota, M.; Mikoshiba, K.; Miyawaki, A. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 2002, 20, 87-90.  doi: 10.1038/nbt0102-87

    9. [9]

      Yang, Z.; Cao, J.; He, Y.; Yang, J. H.; Kim, T.; Peng, X.; Kim, J. S. Macro-/micro-environment-sensitive chemosensing and biological imaging. Chem. Soc. Rev. 2014, 43, 4563-4601.  doi: 10.1039/C4CS00051J

    10. [10]

      Wu, C.; Hansen, S. J.; Hou, Q.; Yu, J.; Zeigler, M.; Jin, Y.; Burnham, D. R.; McNeill, J. D.; Olson, J. M.; Chiu, D. T. Design of highly emissive polymer dot bioconjugates for in vivo tumor targeting. Angew. Chem. Int. Ed. 2011, 123, 3492-3496.  doi: 10.1002/ange.201007461

    11. [11]

      Tao, Z.; Hong, G.; Shinji, C.; Chen, C.; Diao, S.; Antaris, A. L.; Zhang, B.; Zou, Y.; Dai, H. Biological imaging using nanoparticles of small organic molecules with fluorescence emission at wavelengths longer than 1000 nm. Angew. Chem. Int. Ed. 2013, 125, 13240-13244.  doi: 10.1002/ange.201307346

    12. [12]

      Ding, D.; Goh, C. C.; Feng, G.; Zhao, Z.; Liu, J.; Liu, R.; Tomczak, N.; Geng, J.; Tang, B. Z.; Ng, L. G., Liu, B. Ultrabright organic dots with aggregation-induced emission characteristics for real-time two-photon intravital vasculature imaging. Adv. Mater. 2013, 25, 6083-6088.  doi: 10.1002/adma.201301938

    13. [13]

      Liu, L. J.; Liu, W.; Ji, G.; Wu, Z. Y.; Xu, B.; Qian, J.; Tian, W. J. NIR emission nanoparticles based on FRET composed of AIE luminogens and NIR dyes for two-photon fluorescence imaging. Chinese J. Polym. Sci. 2019, 37, 401-408.  doi: 10.1007/s10118-019-2206-3

    14. [14]

      Zhang, X.; Zhang, X.; Wang, S.; Liu, M.; Tao, L.; Wei, Y. Surfactant modification of aggregation-induced emission material as biocompatible nanoparticles: Facile preparation and cell imaging. Nanoscale. 2013, 5, 147-150.  doi: 10.1039/C2NR32698A

    15. [15]

      Wu, X.; Sun, S.; Wang, Y.; Zhu, J.; Jiang, K.; Leng, Y.; Shu, Q.; Lin, H. A fluorescent carbon-dots-based mitochondria-targetable nanoprobe for peroxynitrite sensing in living cells. Biosens. Bioelectron. 2017, 90, 501-507.  doi: 10.1016/j.bios.2016.10.060

    16. [16]

      Tang, L.; Wu, T.; Tang, Z. W.; Xiao, J. Y.; Zhuo, R. X.; Shi, B.; Liu, C. J. Water-soluble photoluminescent fullerene capped mesoporous silica for pH-responsive drug delivery and bioimaging. Nanotechnology. 2016, 27, 315104.  doi: 10.1088/0957-4484/27/31/315104

    17. [17]

      Larson, D. R.; Zipfel, W. R.; Williams, R. M.; Clark, S. W.; Bruchez, M. P.; Wise, F. W.; Webb, W. W. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science. 2003, 300, 1434-1436.  doi: 10.1126/science.1083780

    18. [18]

      Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Quantum dots for live cells, in vivo imaging, and diagnostics. Science. 2005, 307, 538.  doi: 10.1126/science.1104274

    19. [19]

      Li, K.; Liu, B. Polymer-encapsulated organic nanoparticles for fluorescence and photoacoustic imaging. Chem. Soc. Rev. 2014, 43, 6570-6597.  doi: 10.1039/C4CS00014E

    20. [20]

      Feng, G.; Mao, D.; Liu, J.; Goh, C. C.; Ng, L. G.; Kong, D.; Tang, B. Z.; Liu, B. Polymeric nanorods with aggregation-induced emission characteristics for enhanced cancer targeting and imaging. Nanoscale. 2018, 10, 5869-5874.  doi: 10.1039/C7NR09196F

    21. [21]

      Zhang, X.; Wang, K.; Liu, M.; Zhang, X.; Tao, L.; Chen, Y.; Wei, Y. Polymeric AIE-based nanoprobes for biomedical applications: recent advances and perspectives. Nanoscale. 2015, 7, 11486-11508.  doi: 10.1039/C5NR01444A

    22. [22]

      Zhan, R.; Pan, Y.; Manghnani, P. N.; Liu, B. AIE Polymers: Synthesis, properties, and biological applications. Macromol. Biosci. 2017, 17, 1600433.  doi: 10.1002/mabi.v17.5

    23. [23]

      Ma, C.; Xie, G.; Zhang, X.; Yang, L.; Li, Y.; Liu, H.; Wang, K.; Wei, Y. Biocompatible fluorescent polymers from PEGylation of an aggregation-induced emission dye. Dyes Pigments 2017, 139, 672-680.  doi: 10.1016/j.dyepig.2016.12.070

    24. [24]

      Zhou, D.; Zhang, G.; Yu, Q.; Gan, Z. Folic acid modified polymeric micelles for intravesical instilled chemotherapy. Chinese J. Polym. Sci. 2018, 36, 479-487.  doi: 10.1007/s10118-018-2009-y

    25. [25]

      He, J.; Chen, H.; Guo, Y.; Wang, L.; Zhu, L.; Karahan, H. E.; Chen, Y. Polycondensation of a perylene bisimide derivative and l-malic acid as water-soluble conjugates for fluorescent labeling of live mammalian cells. Polymers. 2018, 10, 559.  doi: 10.3390/polym10050559

    26. [26]

      Wang, K.; Zhang, X.; Zhang, X.; Ma, C.; Li, Z.; Huang, Z.; Zhang, Q.; Wei, Y. Preparation of emissive glucose-containing polymer nanoparticles and their cell imaging applications. Polym. Chem. 2015, 6, 4455-4461.  doi: 10.1039/C5PY00378D

    27. [27]

      Huang, Z.; Zhang, X.; Zhang, X.; Wang, S.; Yang, B.; Wang, K.; Yuan, J.; Tao, L.; Wei, Y. Synthesis of amphiphilic fluorescent copolymers with smart pH sensitivity via RAFT polymerization and their application in cell imaging. Polym. Bull. 2017, 74, 4525-4536.  doi: 10.1007/s00289-017-1969-3

    28. [28]

      Hua, Z.; Wilks, T. R.; Keogh, R.; Herwig, G.; Stavros, V. G.; O’Reilly, R. K. Entrapment and rigidification of adenine by a photo-cross-linked thymine network leads to fluorescent polymer nanoparticles. Chem. Mater. 2018, 30, 1408-1416.  doi: 10.1021/acs.chemmater.7b05206

    29. [29]

      Yang, H. M.; Park, C. W.; Park, S.; Kim, J. D. Cross-linked magnetic nanoparticles with a biocompatible amide bond for cancer-targeted dual optical/magnetic resonance imaging. Colloids Surf., B 2018, 161, 183-191.  doi: 10.1016/j.colsurfb.2017.10.049

    30. [30]

      Zhang, X.; Zhang, X.; Yang, B.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. Fabrication of aggregation induced emission dye-based fluorescent organic nanoparticles via emulsion polymerization and their cell imaging applications. Polym. Chem. 2014, 5, 399-404.  doi: 10.1039/C3PY00984J

    31. [31]

      Shen, X.; Shi, Y.; Peng, B.; Li, K.; Xiang, J.; Zhang, G.; Liu, Z.; Chen, Y.; Zhang, D. Fluorescent polymeric micelles with tetraphenylethylene moieties and their application for the selective detection of glucose. Macromol. Biosci. 2012, 12, 1583-1590.  doi: 10.1002/mabi.v12.11

    32. [32]

      Lim, C. K.; Kim, S.; Kwon, I. C.; Ahn, C. H.; Park, S. Y. Dye-condensed biopolymeric hybrids: Chromophoric aggregation and self-assembly toward fluorescent bionanoparticles for near infrared bioimaging. Chem. Mater. 2009, 21, 5819-5825.  doi: 10.1021/cm902379x

    33. [33]

      Lu, H.; Su, F.; Mei, Q.; Zhou, X.; Tian, Y.; Tian, W.; Johnson, R. H.; Meldrum, D. R. A series of poly[N-(2-hydroxypropyl)methacrylamide] copolymers with anthracene-derived fluorophores showing aggregation-induced emission properties for bioimaging. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 890-899.  doi: 10.1002/pola.v50.5

    34. [34]

      Zhang, X.; Zhang, X.; Yang, B.; Hui, J.; Liu, M.; Chi, Z.; Liu, S.; Xu, J.; Wei, Y. Facile preparation and cell imaging applications of fluorescent organic nanoparticles that combine AIE dye and ring-opening polymerization. Polym. Chem. 2014, 5, 318-322.  doi: 10.1039/C3PY01143G

    35. [35]

      Zhang, X.; Zhang, X.; Yang, B.; Hui, J.; Liu, M.; Liu, W.; Chen, Y.; Wei, Y. PEGylation and cell imaging applications of AIE based fluorescent organic nanoparticles via ring-opening reaction. Polym. Chem. 2014, 5, 689-693.  doi: 10.1039/C3PY01272G

    36. [36]

      Chithrani, B. D.; Chan, W. C. W. Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes. Nano Lett. 2007, 7, 1542-1550.  doi: 10.1021/nl070363y

    37. [37]

      Barua, S.; Yoo, J. W.; Kolhar, P.; Wakankar, A.; Gokarn, Y. R.; Mitragotri, S. Particle shape enhances specificity of antibody-displaying nanoparticles. Proc. Nat. Acad. Sci. 2013, 110, 3270.  doi: 10.1073/pnas.1216893110

    38. [38]

      Salata, O. V. Applications of nanoparticles in biology and medicine. J. Nanobiotechnology. 2004, 2, 3.  doi: 10.1186/1477-3155-2-3

    39. [39]

      Albanese, A.; Tang, P. S.; Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 2012, 14, 1-16.  doi: 10.1146/annurev-bioeng-071811-150124

    40. [40]

      Ding, L.; Zhou, S.; Li, D.; Wu, C.; Xing, Y.; Song, B. A facile method to incorporate tetraphenylethylene into polymeric amphiphiles: High emissive nanoparticles for cell-imaging. Dyes Pigments 2019, 160, 711-716.  doi: 10.1016/j.dyepig.2018.08.063

    41. [41]

      Gauthier, M. A.; Gibson, M. I.; Klok, H. A. Synthesis of functional polymers by post-polymerization modification. Angew. Chem. Int. Ed. 2009, 48, 48-58.  doi: 10.1002/anie.200801951

    42. [42]

      Günay, K. A.; Theato, P.; Klok, H. A. Standing on the shoulders of Hermann Staudinger: Post-polymerization modification from past to present. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1-28.  doi: 10.1002/pola.26333

    43. [43]

      Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission. Chem. Soc. Rev. 2011, 40, 5361-5388.  doi: 10.1039/c1cs15113d

    44. [44]

      Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718-11940.  doi: 10.1021/acs.chemrev.5b00263

    45. [45]

      Zhao, Y.; Wu, Y.; Yan, G.; Zhang, K. Aggregation-induced emission block copolymers based on ring-opening metathesis polymerization. RSC Adv. 2014, 4, 51194-51200.  doi: 10.1039/C4RA08191A

  • 加载中
    1. [1]

      Chaochao WeiRu WangZhongkai WuQiyue LuoZiling JiangLiang MingJie YangLiping WangChuang Yu . Revealing the size effect of FeS2 on solid-state battery performances at different operating temperatures. Chinese Chemical Letters, 2024, 35(6): 108717-. doi: 10.1016/j.cclet.2023.108717

    2. [2]

      Boran ChengLei CaoChen LiFang-Yi HuoQian-Fang MengGanglin TongXuan WuLin-Lin BuLang RaoShubin Wang . Fluorine-doped carbon quantum dots with deep-red emission for hypochlorite determination and cancer cell imaging. Chinese Chemical Letters, 2024, 35(6): 108969-. doi: 10.1016/j.cclet.2023.108969

    3. [3]

      Zhixue LiuHaiqi ChenLijuan GuoXinyao SunZhi-Yuan ZhangJunyi ChenMing DongChunju Li . Luminescent terphen[3]arene sulfate-activated FRET assemblies for cell imaging. Chinese Chemical Letters, 2024, 35(9): 109666-. doi: 10.1016/j.cclet.2024.109666

    4. [4]

      Jia-Mei QinXue LiWei LangFu-Hao ZhangQian-Yong Cao . An AIEgen nano-assembly for simultaneous detection of ATP and H2S. Chinese Chemical Letters, 2024, 35(6): 108925-. doi: 10.1016/j.cclet.2023.108925

    5. [5]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    6. [6]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    7. [7]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    8. [8]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    9. [9]

      Jianqiu LiYi ZhangSongen LiuJie NiuRong ZhangYong ChenYu Liu . Cucurbit[8]uril-based non-covalent heterodimer realized NIR cell imaging through topological transformation from nanowire to nanorod. Chinese Chemical Letters, 2024, 35(10): 109645-. doi: 10.1016/j.cclet.2024.109645

    10. [10]

      Tiantian ManFulin ZhuYaqi HuangYuhao PiaoYan SuShengyuan DengYing Wan . Mobile mini-fluorimeter for antibiotic aptasensing based on surface-plasmonic effect of burlike nanogolds enhanced by digitized imaging diagnosis. Chinese Chemical Letters, 2024, 35(5): 109036-. doi: 10.1016/j.cclet.2023.109036

    11. [11]

      Chaochao JinKai LiJiongpei ZhangZhihua WangJiajing TanN,O-Bidentated difluoroboron complexes based on pyridine-ester enolates: Facile synthesis, post-complexation modification, optical properties, and applications. Chinese Chemical Letters, 2024, 35(9): 109532-. doi: 10.1016/j.cclet.2024.109532

    12. [12]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    13. [13]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    14. [14]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    15. [15]

      Yunan YuanZhimin LuoJie ChenChaoliang HeKai HaoHuayu Tian . Constructing thermoresponsive PNIPAM-based microcarriers for cell culture and enzyme-free cell harvesting. Chinese Chemical Letters, 2024, 35(7): 109549-. doi: 10.1016/j.cclet.2024.109549

    16. [16]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    17. [17]

      Shihong WuRonghui ZhouHang ZhaoPeng Wu . Sonoafterglow luminescence for in vivo deep-tissue imaging. Chinese Chemical Letters, 2024, 35(10): 110026-. doi: 10.1016/j.cclet.2024.110026

    18. [18]

      Ying ZhaoYin-Hang ChaiTian ChenJie ZhengTing-Ting LiFrancisco AznarezLi-Long DangLu-Fang Ma . Size-controlled synthesis and near-infrared photothermal response of Cp* Rh-based metalla[2]catenanes and rectangular metallamacrocycles. Chinese Chemical Letters, 2024, 35(6): 109298-. doi: 10.1016/j.cclet.2023.109298

    19. [19]

      Lishan XiongXinyuan LiXiaojie LuZhendong ZhangYan ZhangWen WuChenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384

    20. [20]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

Metrics
  • PDF Downloads(0)
  • Abstract views(729)
  • HTML views(16)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return