Citation: Cong-Jun Gan, Xiao-Chen Xu, Xue-Wei Jiang, Feng Gan, Jie Dong, Xin Zhao, Qing-Hua Zhang. Fabrication of 6FDA-HFBAPP Polyimide Asymmetric Hollow Fiber Membranes and Their CO2/CH4 Separation Properties[J]. Chinese Journal of Polymer Science, ;2019, 37(8): 815-826. doi: 10.1007/s10118-019-2255-7 shu

Fabrication of 6FDA-HFBAPP Polyimide Asymmetric Hollow Fiber Membranes and Their CO2/CH4 Separation Properties

  • Corresponding author: Xin Zhao, xzhao@dhu.edu.cn Qing-Hua Zhang, qhzhang@dhu.edu.cn
  • Received Date: 17 January 2019
    Revised Date: 6 March 2019
    Accepted Date: 1 January 2019
    Available Online: 23 April 2019

  • In this work, poly(amide acid) solution, the precursor of polyimide, was synthesized by the reaction of 4,4′-(hexafluoroisopropylidene)diphthalicanhydride and 2,2-bis[4-(4-aminophenoxy)phenyl]-hexafluoropropanane in the solvent of N-methyl-2-pyrrolidone (NMP) and tetrahydrofuran (THF). Then, hollow fiber membranes for high flux gas separation were prepared by dry-jet wet spinning using the precursor solution of poly(amide acid) as the spinning dope and a subsequent imidization process. Silicone rubber was further coated outside the obtained hollow fiber membranes to repair the defects on the denser layer. The effects of internal, external coagulation bath ratios with air gap, and coating solution concentrations on the morphologies, structures, and separation performance of the membranes were studied. Results showed that the sponge-like support layer was formed when the content of NMP was increased from 50% to 90% in the internal coagulation bath. The outer surface of the membrane became denser when the water content in the external coagulation bath increased from 40% to 100%, and the separation coefficient of CO2/CH4 increased by 2 times. This value could reach up to 1.4 when the air gap was 6 cm. With tuning the mass fraction of silicone rubber as 5%, hollow fiber composite membranes with uniform coating layer and an improved separation coefficient of 5.4 could be obtained.
  • 加载中
    1. [1]

      Appels, L.; Lauwers, J.; Degreve, J.; Helsen, L.; Lievens, B.; Willems, K.; Vanimpe, J.; Rewil, R. Anaerobic digestion in global bio-energy production: potential and research challenges. Renew. Sust. Energ. Rev. 2011, 15, 4295-4301.  doi: 10.1016/j.rser.2011.07.121

    2. [2]

      Favre, E.; Bounaceur, R.; Roizard, D. Biogas, membranes and carbon dioxide capture. J. Membr. Sci. 2009, 328, 11-14.  doi: 10.1016/j.memsci.2008.12.017

    3. [3]

      Favre, E. Membrane processes and postcombustion carbon dioxide capture: challenges and prospects. Chem. Eng. J. 2011, 171, 782-793  doi: 10.1016/j.cej.2011.01.010

    4. [4]

      Wenten, I. G. Recent development in membrane science and its industrial applications. Songklanakarin J. Sci. Technol. 2002, 24, 1010-1024.

    5. [5]

      Andriani, D.; Wresta, A.; Atmaja, T. D,; Saepudin, A. A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl. Biochem. Biotech. 2014, 172, 1909-1928.  doi: 10.1007/s12010-013-0652-x

    6. [6]

      Du, N.; Park, H. Advances in high permeability polymeric membrane materials for CO2 separations. Energ. Environ. Sci. 2012, 5, 7306-7322.  doi: 10.1039/C1EE02668B

    7. [7]

      Jung, C. H.; Lee, J. E.; Han, S. H.; Park H. B.; Lee, Y. M. Highly permeable and selective poly (benzoxazole-co-imide) membranes for gas separation. J. Membr. Sci. 2010, 350, 301-309.  doi: 10.1016/j.memsci.2010.01.005

    8. [8]

      Budd, P. M.; Mckeown, N. B. Highly permeable polymers for gas separation membranes. Polym. Chem. 2010, 1, 63-68.  doi: 10.1039/b9py00319c

    9. [9]

      Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991, 62, 165-185.  doi: 10.1016/0376-7388(91)80060-J

    10. [10]

      Robeson, L. M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390-400.  doi: 10.1016/j.memsci.2008.04.030

    11. [11]

      Calle, M.; Garcia, C.; Lozano, A. E.; Delacampa, J. G.; Deabajo, J.; Alvarez, C. Local chain mobility dependence on molecular structure in polyimides with bulky side groups: Correlation with gas separation properties. J. Membr. Sci. 2013, 434, 121-129.  doi: 10.1016/j.memsci.2013.01.054

    12. [12]

      Carta, M.; Croad, M. Triptycene induced enhancement of membrane gas selectivity for microporous Tröger's base polymers. Adv. Mater. 2014, 26, 3526-3531.  doi: 10.1002/adma.v26.21

    13. [13]

      Ma, X.; Swaidan, R.; Belmabkhout, Y. Synthesis and gas transport properties of hydroxyl-functionalized polyimides with intrinsic microporosity. Macromolecules 2012, 45, 3841-3849.  doi: 10.1021/ma300549m

    14. [14]

      Kim, S.; Pechar, T. W.; Marand, E. Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination 2006, 192, 330-339.  doi: 10.1016/j.desal.2005.03.098

    15. [15]

      Chen, X. Y.; Rodrigue, D.; Kaliaguine, S. Diamino-organosilicone APTMDS: A new cross-linking agent for polyimides membranes. Sep. Purif. Technol. 2012, 86, 221-233.  doi: 10.1016/j.seppur.2011.11.008

    16. [16]

      Qiu, W.; Xu, L.; Chen, C. C.; Paul, D. R.; Koros, W. J. Gas separation performance of 6FDA-based polyimides with different chemical structures. Polymer 2013, 54, 6226-6235.  doi: 10.1016/j.polymer.2013.09.007

    17. [17]

      Xu, L.; Zhang, C.; Rungta, M.; Koros, W. J. Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations. J. Membr. Sci. 2014, 459, 223-232.  doi: 10.1016/j.memsci.2014.02.023

    18. [18]

      Qiu, X. Z.; Wang, Y. M.; Wang, L. N.; Zhou, M. Q.; Yuan, Q. Preparation and properties of soluble polyimide membranes containing polyether segment for gas separation. Chem. J. Chinese U. 2009, 30, 196-202.

    19. [19]

      Wang, Z. G.; Liu, X.; Wang, D. Tröger's base-based copolymers with intrinsic microporosity for CO2 separation and effect of Tröger's base on separation performance. Polym. Chem. 2014, 5, 2793-2800.  doi: 10.1039/c3py01608k

    20. [20]

      Smith, Z. P.; Freeman, B. D. Graphene Oxide: A new platform for high-performance gas- and liquid- separation membranes. Angew. Chem. Int. Edit. 2014, 53, 10286-10288.  doi: 10.1002/anie.201404407

    21. [21]

      Ahmad, F.; Lau, K. K.; Shariff, A. M.; Yeong Y. F. Temperature and pressure dependence of membrane permeance and its effect on process economics of hollow fiber gas separation system. J. Membr. Sci. 2013, 430, 44-55.  doi: 10.1016/j.memsci.2012.11.070

    22. [22]

      Labreche, Y.; Lively, R. P.; Rezaei, F.; Chen, G.; Jones, C. W.; Koros, W. J. Post-spinning infusion of poly(ethyleneimine) into polymer/silica hollow fiber sorbents for carbon dioxide capture. Chem. Eng. J. 2013, 221, 166-175.  doi: 10.1016/j.cej.2013.01.086

    23. [23]

      Ren, J.; Wang, R. The effects of chemical modifications on morphology and performance of 6FDA-ODA/NDA hollow fiber membranes for CO2/CH4 separation. J. Membr. Sci. 2003, 222, 133-147  doi: 10.1016/S0376-7388(03)00266-7

    24. [24]

      Ma, C.; Zhang, C.; Labreche, Y.; Fu, S. L.; Liu, L.; Koros, W. J. Thin-skinned intrinsically defect-free asymmetric mono-esterified hollow fiber precursors for crosslinkable polyimide gas separation membranes. J. Membr. Sci. 2015, 493, 252-262  doi: 10.1016/j.memsci.2015.06.018

    25. [25]

      Wienk, I.; Boom, R. Recent advances in the formation of phase inversion membranes made from amorphous or semi-crystalline polymers. J. Membr. Sci. 1996, 113, 361-371.  doi: 10.1016/0376-7388(95)00256-1

    26. [26]

      Reuvers, A.; Van, A. Formation of membranes by means of immersion precipitation: Part I. A model to describe mass transfer during immersion precipitation. J. Membr. Sci. 1987, 34, 45-65.  doi: 10.1016/S0376-7388(00)80020-4

    27. [27]

      Widjojo, N.; Chung, T. S. Thickness and air gap dependence of macrovoid evolution in phase-inversion asymmetric hollow fiber membranes. Ind. Eng. Chem. Res. 2006, 45, 7618-7626.  doi: 10.1021/ie0606587

    28. [28]

      Wang, D.; Li, K.; Teo, W. K. Highly permeable polyethersulfone hollow fiber gas separation membranes prepared using water as non-solvent additive. J. Membr. Sci. 2000, 176, 147-158.  doi: 10.1016/S0376-7388(00)00419-1

    29. [29]

      Hibshman, C.; Cornelius, C. J.; Marand, E. The gas separation effects of annealing polyimide-organosilicate hybrid membranes. J. Membrane Sci. 2003, 211, 25-40  doi: 10.1016/S0376-7388(02)00306-X

    30. [30]

      Bondi, A. Van der Waals volumes and radii. J. Phys. Chem. 1964, 68, 441-451.  doi: 10.1021/j100785a001

    31. [31]

      Van, Krevelen, D. W.; Te Nijenhuis, K. Properties of polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Elsevier, 2009

    32. [32]

      Jiang, X. W.; Xiao, X.; Dong, J.; Xu, X. C.; Zhao, X.; Zhang, Q. H. Effects of non-TR-able codiamines and rearrangement conditions on the chain packing and gas separation performance of thermally rearranged poly(benzoxazole-co-imide) membranes. J. Membr. Sci. 2018, 564, 605-616.  doi: 10.1016/j.memsci.2018.07.068

    33. [33]

      Pinnau, I.; Koros, W. J. Structures and gas separation properties of asymmetric polysulfone membranes made by dry, wet, and dry/wet phase inversion. J. Appl. Polym. Sci. 1991, 43, 1491-1502.  doi: 10.1002/app.1991.070430811

    34. [34]

      Ji, D. W.; Xiao, C. F.; An, S. L.; Zhao, J.; Hao, J. Q.; Chen, K. K. Preparation of high-flux PSF/GO loose nanofiltration hollow fiber membranes with dense-loose structure for treating textile wastewater. Chem. Eng. J. 2019, 363, 33-42  doi: 10.1016/j.cej.2019.01.111

  • 加载中
    1. [1]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    2. [2]

      Yue QianZhoujia LiuHaixin SongRuize YinHanni YangSiyang LiWeiwei XiongSaisai YuanJunhao ZhangHuan Pang . Imide-based covalent organic framework with excellent cyclability as an anode material for lithium-ion battery. Chinese Chemical Letters, 2024, 35(6): 108785-. doi: 10.1016/j.cclet.2023.108785

    3. [3]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    4. [4]

      Yan ZouYin-Shuang HuDeng-Hui TianHong WuXiaoshu LvGuangming JiangYu-Xi Huang . Tuning the membrane rejection behavior by surface wettability engineering for an effective water-in-oil emulsion separation. Chinese Chemical Letters, 2024, 35(6): 109090-. doi: 10.1016/j.cclet.2023.109090

    5. [5]

      Changle Liu Mingyuzhi Sun Haoran Zhang Xiqian Cao Yuqing Li Yingtang Zhou . All in one doubly pillared MXene membrane for excellent oil/water separation, pollutant removal, and anti-fouling performance. Chinese Journal of Structural Chemistry, 2024, 43(8): 100355-100355. doi: 10.1016/j.cjsc.2024.100355

    6. [6]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    7. [7]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    8. [8]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    9. [9]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    10. [10]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    11. [11]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    12. [12]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    13. [13]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    14. [14]

      Ning LISiyu DUXueyi WANGHui YANGTao ZHOUZhimin GUANPeng FEIHongfang MAShang JIANG . Preparation and efficient catalysis for olefins epoxidation of a polyoxovanadate-based hybrid. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 799-808. doi: 10.11862/CJIC.20230372

    15. [15]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    16. [16]

      Jia FuShilong ZhangLirong LiangChunyu DuZhenqiang YeGuangming Chen . PEDOT-based thermoelectric composites: Preparation, mechanism and applications. Chinese Chemical Letters, 2024, 35(9): 109804-. doi: 10.1016/j.cclet.2024.109804

    17. [17]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    18. [18]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    19. [19]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    20. [20]

      Xubin QianLei XuXu GeZhun LiuCheng FangJianbing WangJunfeng Niu . Can perfluorooctanoic acid be effectively degraded using β-PbO2 reactive electrochemical membrane?. Chinese Chemical Letters, 2024, 35(7): 109218-. doi: 10.1016/j.cclet.2023.109218

Metrics
  • PDF Downloads(0)
  • Abstract views(641)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return