Citation: Ying-Zhong Wu, Yi-Chen Zhang, Jia-Jun Chen, Li-Juan Fan. Synthesis of Conjugated Polymers Containing Diketopyrrolopyrrole (DPP) Building Block and the Photophysical Study[J]. Chinese Journal of Polymer Science, ;2019, 37(11): 1092-1098. doi: 10.1007/s10118-019-2248-6 shu

Synthesis of Conjugated Polymers Containing Diketopyrrolopyrrole (DPP) Building Block and the Photophysical Study

  • Corresponding author: Li-Juan Fan, ljfan@suda.edu.cn
  • Received Date: 15 February 2019
    Revised Date: 28 February 2019
    Available Online: 1 April 2019

  • Sonogashira coupling of two different diketopyrrolopyrrole (DPP)-containing dihaloarenes with the same aromatic bisalkyne resulted in two new conjugated polymers with the same backbone but different pendant groups on the DPP moiety. The polymers were found to have designed chemical structures via structural characterizations in comparison with three monomers. The molecular weight measurement further demonstrated the formation of polymers with polydispersity index around 2, consistent with the polycondensation nature of the polymerization based on Sonogashira coupling. Both polymers could dissolve in many organic solvents, and the one with long alkyl side group on DPP moiety had better solubility. Photophysical investigation showed that both polymers had typical absorption/emission of conjugated polymers, and varying the solvent did not have large influence. Compared with other polar solvents, toluene reduced the quantum yield of fluorescence of the polymers, especially for the one with long alkyl pedant group, accompanying with slight red-shift in absorption/emission. The difference in the absorption/emission wavelengths between the polymers was similar to that between the corresponding monomers. Adding water into the THF solution of polymers reduced the emission intensity but no red-shift was observed. Discussion about the structure-property relationships was carried out in detail.
    1. [1]

      Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 2009, 109, 897-1091.  doi: 10.1021/cr000013v

    2. [2]

      Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324-1338.  doi: 10.1021/cr050149z

    3. [3]

      Bin, H.; Li, Y. Recent research progress of photovoltaic materials for nonfullerene polymer solar cells. Acta Polymerica Sinica (in Chinese) 2017, 9, 1444-1461.  doi: 10.11777/j.issn1000-3304.2017.17119

    4. [4]

      Zhao, L.; Lin, Z. Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells. Adv. Mater. 2012, 24, 4353-4368.  doi: 10.1002/adma.201201196

    5. [5]

      Lyu, Y.; Pu, K. Recent advances of activatable molecular probes based on semiconducting polymer nanoparticles in sensing and imaging. Adv. Sci. 2017, 4, 1600481.  doi: 10.1002/advs.201600481

    6. [6]

      Fan, L. J.; Zhang, Y.; Murphy, C. B.; Angell, S. E.; Parker, M. F. L.; Flynn, B. R.; Jones, W. E. Fluorescent conjugated polymer molecular wire chemosensors for transition metal ion recognition and signaling. Coord. Chem. Rev. 2009, 253, 410-422.  doi: 10.1016/j.ccr.2008.03.008

    7. [7]

      Zhang, E.; Liu, L.; Lv, F.; Wang, S. Water-soluble conjugated polymers for biosensor applications. Acta Polymerica Sinica (in Chinese) 2018, 2, 186-197.  doi: 10.11777/j.issn1000-3304.2018.17269

    8. [8]

      McQuade, D. T.; Pullen, A. E.; Swager, T. M. Conjugated polymer-based chemical sensors. Chem. Rev. 2000, 100, 2537-2574.  doi: 10.1021/cr9801014

    9. [9]

      McAfee, S. M.; Dayneko, S. V.; Hendsbee, A. D.; Josse, P.; Blanchard, P.; Cabanetos, C.; Welch, G. C. Applying direct heteroarylation synthesis to evaluate organic dyes as the core component in PDI-based molecular materials for fullerene-free organic solar cells. J. Mater. Chem. A 2017, 5, 11623-11633.  doi: 10.1039/C7TA00318H

    10. [10]

      Kaur, M.; Choi, D. H. Diketopyrrolopyrrole: brilliant red pigment dye-based fluorescent probes and their applications. Chem. Soc. Rev. 2015, 44, 58-77.  doi: 10.1039/C4CS00248B

    11. [11]

      Shen, X. Y.; Wang, Y. J.; Zhang, H.; Qin, A.; Sun, J. Z.; Tang, B. Z. Conjugates of tetraphenylethene and diketopyrrolopyrrole: tuning the emission properties with phenyl bridges. Chem. Commun. 2014, 50, 8747-8750.  doi: 10.1039/C4CC03024A

    12. [12]

      Tang, S.; Zadeh, E. H. G.; Kim, B.; Toomey, N. T.; Bondarc, M. V.; Belfield, K. D. Protein-induced fluorescence enhancement of two-photon excitable water-soluble diketopyrrolopyrroles. Org. Biomol. Chem. 2017, 15, 6511-6519.  doi: 10.1039/C7OB01397C

    13. [13]

      Zong, S.; Wang, X.; Lin, W.; Liu, S.; Zhang, W. Simple D A D structural bisbithiophenyl diketopyrrolopyrrole as efficient bioimaging and photothermal agents. Bioconjugate Chem. 2018, 29, 2619-2627.  doi: 10.1021/acs.bioconjchem.8b00333

    14. [14]

      Zeng, W.; Zhou, Q.; Zhang, H.; Qi, X. One-coat epoxy coating development for the improvement of UV stability by DPP pigments. Dyes Pigments 2018, 151, 157-164.  doi: 10.1016/j.dyepig.2017.12.058

    15. [15]

      Qu, S.; Tian, H. Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics. Chem. Commun. 2012, 48, 3039-3051.  doi: 10.1039/c2cc17886a

    16. [16]

      Yang, J.; Chen, J.; Sun, Y.; Shi, L.; Guo, Y.; Wang, S.; Liu, Y. Design and synthesis of novel conjugated polymers for applications in organic field-effect transistors. Acta Polymerica Sinica (in Chinese) 2017, 7, 1082-1096.  doi: 10.11777/j.issn1000-3304.2017.17020

    17. [17]

      Li, W.; Hendriks, K. H.; Wienk, M. M.; Janssen, R. A. J. Diketopyrrolopyrrole polymers for organic solar cells. Acc. Chem. Res. 2016, 49, 78-85.  doi: 10.1021/acs.accounts.5b00334

    18. [18]

      Zhang, Z.; Liu, Z.; Yan, K.; Li, H.; Liu, W.; Lu, X.; Li, H.; Chen, H.; Li, C. Photovoltaic properties of DPP-based two- and three-component polymers. Acta Polymerica Sinica (in Chinese) 2018, 2, 295-303.  doi: 10.11777/j.issn1000-3304.2018.17253

    19. [19]

      Deng, Y.; Xiao, H.; Qiao, H.; Tan, S. Synthesis and photoelectric performance of conjugated polymers with ullazine unit. Acta Polymerica Sinica (in Chinese) 2017, 6, 922-929.  doi: 10.11777/j.issn1000-3304.2017.16314

    20. [20]

      Qu, Y.; Wu, Y.; Gao, Y.; Qu, S.; Yang, L.; Hua, J. Diketopyrrolopyrrole-based fluorescent conjugated polymer for application of sensing fluoride ion and bioimaging. Sens. Actuators B 2014, 197, 13-19.  doi: 10.1016/j.snb.2014.02.065

    21. [21]

      Lin, S.; Liu, S.; Zou, H.; Zeng, W.; Wang, L.; Beuerman, R.; Cao, D. Synthesis of diketopyrrolopyrrole-containing conjugated polyelectrolytes for naked-eye detection of DNA. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 3882-3889.  doi: 10.1002/pola.24829

    22. [22]

      He, F.; Liu, L.; Li, L. Water-soluble conjugated polymers for amplified fluorescence detection of template-independent DNA elongation catalyzed by polymerase. Adv. Funct. Mater. 2011, 21, 3143-3149.  doi: 10.1002/adfm.201100216

    23. [23]

      Yang, J.; Wang, H.; Chen, J.; Huang, J.; Jiang, Y.; Zhang, J.; Shi, L.; Sun, Y.; Wei, Z.; Yu, G.; Guo, Y.; Wang, S.; Liu, Y. Bis-diketopyrrolopyrrole moiety as a promising building block to enable balanced ambipolar polymers for flexible transistors. Adv. Mater. 2017, 29, 1606162.  doi: 10.1002/adma.v29.22

    24. [24]

      Wang, B.; Sonar, P.; Manzhos, S.; Haick, H. Diketopyrrolopyrrole copolymers based chemical sensors for the detection and discrimination of volatile organic compounds. Sens. Actuators B 2017, 251, 49-56.  doi: 10.1016/j.snb.2017.04.167

    25. [25]

      Gao, Y.; Bai, J.; Sui, Y.; Han, Y.; Deng, Y.; Tian, H.; Geng, Y.; Wang, F. High mobility ambipolar diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation: influence of thiophene moieties and side chains. Macromolecules 2018, 51, 8752-8760.  doi: 10.1021/acs.macromol.8b01112

    26. [26]

      Shen, H.; Kou, C.; He, M.; Yang, H.; Liu, K. Synthesis and surfactochromicity of 1,4-diketopyrrolo[3,4-c] pyrrole(DPP)-based anionic conjugated polyelectrolytes. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 739-751.  doi: 10.1002/pola.v52.6

    27. [27]

      Lee, J. B.; Kim, K. H.; Hong, C. S.; Choi, D. H. High-performance amorphous donor-acceptor conjugated polymers containing X-shaped anthracene-based monomer and 2,5-bis(2-octyldodecyl)pyrrolo[3,4-c] pyrrole-1,4(2h,5h)-dione for organic thin-film transistors. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 2809-2818.  doi: 10.1002/pola.26078

    28. [28]

      Sen, C. P.; Shrestha, R. G.; Shrestha, L. K.; Ariga, K.; Valiyaveettil, S. Low-band-gap BODIPY conjugated copolymers for sensing volatile organic compounds. Chem. Eur. J. 2015, 21, 17344-17354.  doi: 10.1002/chem.201502939

    29. [29]

      Zhang, G.; Liu, K.; Lia, Y.; Yang, M. Novel poly(phenylene ethynylene)-type conjugated polymers containing diketopyrrolopyrrole or triphenylpyrazoline units in the main chain: synthesis, characterization and photophysical properties. Polym. Int. 2009, 58, 665-673.  doi: 10.1002/pi.2576

    30. [30]

      Palai, A. K.; Mishra, S. P.; Kumar, A.; Srivastava, R.; Kamalasanan, M. N.; Patri, M. Synthesis and characterization of alternative donor-acceptor arranged poly(arylene ethynylene)s derived from 1,4-diketo-3,6-diphenylpyrrolo-[3,4-c] pyrrole (DPP). Eur. Polym. J. 2010, 46, 1940-1951.  doi: 10.1016/j.eurpolymj.2010.07.004

    31. [31]

      Zhao, Y. J.; Miao, K.; Zhu, Z.; Fan, L. J. Fluorescence quenching of a conjugated polymer by synergistic amine-carboxylic acid and π-π interactions for selective detection of aromatic amines in aqueous solution. ACS Sens. 2017, 2, 842-847.  doi: 10.1021/acssensors.7b00245

    32. [32]

      Wu, W.; Xu, H.; Shen, D.; Qiu, T.; Fan, L. J. One-step synthesis of a thienylenepyridazinylenethienylene-based coil-rod-coil copolymer with enhanced emission and improved fluorescence stability. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1636-1644.  doi: 10.1002/pola.26535

    33. [33]

      Zhang, H.; Shao, Y.; Chen, H.; Miao, K.; Fan, L. J. Poly(perylene-alt-phenyleneethynylene)s with multiple pendant ester groups in various lengths: synthesis, photophysics and selective hydrolysis. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1880-1886.  doi: 10.1002/pola.v55.11

    34. [34]

      Xu, H.; Wu, W.; Chen, Y.; Qiu, T.; Fan, L. J. Construction of response patterns for metal cations by using a fluorescent conjugated polymer sensor array from parallel combinatorial synthesis. ACS Appl. Mater. Interfaces 2014, 6, 5041-5049.  doi: 10.1021/am5001272

    35. [35]

      Pang, Y.; Li, J.; Barton, T. J. Processible poly[(p-phenyleneethynylene)-alt-(2,5-thienyleneethynylene)]s of high luminescence: their synthesis and physical properties. J. Mater. Chem. 1998, 8, 1687-1690.  doi: 10.1039/a802032i

    36. [36]

      Magde, D.; Wong, R.; Seybold, P. G. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem. Photobiol. 2002, 75, 327-334.  doi: 10.1562/0031-8655(2002)075<0327:FQYATR>2.0.CO;2

    37. [37]

      Beninatto, R.; Borsato, G.; Lucchi, O. D.; Fabris, F.; Lucchini, V.; Zendri, E. New 3,6-bis(biphenyl)diketopyrrolopyrrole dyes and pigments via Suzuki-Miyaura coupling. Dyes Pigments 2013, 96, 679-685.  doi: 10.1016/j.dyepig.2012.11.011

    38. [38]

      Guo, E. Q.; Ren, P. H.; Zhang, Y. L.; Zhang, H. C.; Yang, W. J. Diphenylamine end-capped 1,4-diketo-3,6-diphenylpyrrolo[3,4-c] pyrrole (DPP) derivatives with large two-photon absorption cross-sections and strong two-photon excitation red fluorescence. Chem. Commun. 2009, 5859-5861.  doi: 10.1039/b911808j

    39. [39]

      Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017-7036.  doi: 10.1021/ja01002a035

    40. [40]

      Pliego, J. R. Potassium fluoride activation for the nucleophilic fluorination reaction using 18-crown-6, [2.2.2] -cryptand, pentaethylene glycol and comparison with the new hydro-crown scaffold: a theoretical analysis. Org. Biomol. Chem. 2018, 16, 3127-3137.  doi: 10.1039/C8OB00418H

    41. [41]

      Misra, R.; Bhattacharyya, S. P. Bhattacharyya, Intramolecular Charge Transfer: Theory and Applications, 1st edition, 2018, Wiley-VCH Verlag GmbH &Co. KGaA.

    1. [1]

      Grimsdale, A. C.; Chan, K. L.; Martin, R. E.; Jokisz, P. G.; Holmes, A. B. Synthesis of light-emitting conjugated polymers for applications in electroluminescent devices. Chem. Rev. 2009, 109, 897-1091.  doi: 10.1021/cr000013v

    2. [2]

      Günes, S.; Neugebauer, H.; Sariciftci, N. S. Conjugated polymer-based organic solar cells. Chem. Rev. 2007, 107, 1324-1338.  doi: 10.1021/cr050149z

    3. [3]

      Bin, H.; Li, Y. Recent research progress of photovoltaic materials for nonfullerene polymer solar cells. Acta Polymerica Sinica (in Chinese) 2017, 9, 1444-1461.  doi: 10.11777/j.issn1000-3304.2017.17119

    4. [4]

      Zhao, L.; Lin, Z. Crafting semiconductor organic-inorganic nanocomposites via placing conjugated polymers in intimate contact with nanocrystals for hybrid solar cells. Adv. Mater. 2012, 24, 4353-4368.  doi: 10.1002/adma.201201196

    5. [5]

      Lyu, Y.; Pu, K. Recent advances of activatable molecular probes based on semiconducting polymer nanoparticles in sensing and imaging. Adv. Sci. 2017, 4, 1600481.  doi: 10.1002/advs.201600481

    6. [6]

      Fan, L. J.; Zhang, Y.; Murphy, C. B.; Angell, S. E.; Parker, M. F. L.; Flynn, B. R.; Jones, W. E. Fluorescent conjugated polymer molecular wire chemosensors for transition metal ion recognition and signaling. Coord. Chem. Rev. 2009, 253, 410-422.  doi: 10.1016/j.ccr.2008.03.008

    7. [7]

      Zhang, E.; Liu, L.; Lv, F.; Wang, S. Water-soluble conjugated polymers for biosensor applications. Acta Polymerica Sinica (in Chinese) 2018, 2, 186-197.  doi: 10.11777/j.issn1000-3304.2018.17269

    8. [8]

      McQuade, D. T.; Pullen, A. E.; Swager, T. M. Conjugated polymer-based chemical sensors. Chem. Rev. 2000, 100, 2537-2574.  doi: 10.1021/cr9801014

    9. [9]

      McAfee, S. M.; Dayneko, S. V.; Hendsbee, A. D.; Josse, P.; Blanchard, P.; Cabanetos, C.; Welch, G. C. Applying direct heteroarylation synthesis to evaluate organic dyes as the core component in PDI-based molecular materials for fullerene-free organic solar cells. J. Mater. Chem. A 2017, 5, 11623-11633.  doi: 10.1039/C7TA00318H

    10. [10]

      Kaur, M.; Choi, D. H. Diketopyrrolopyrrole: brilliant red pigment dye-based fluorescent probes and their applications. Chem. Soc. Rev. 2015, 44, 58-77.  doi: 10.1039/C4CS00248B

    11. [11]

      Shen, X. Y.; Wang, Y. J.; Zhang, H.; Qin, A.; Sun, J. Z.; Tang, B. Z. Conjugates of tetraphenylethene and diketopyrrolopyrrole: tuning the emission properties with phenyl bridges. Chem. Commun. 2014, 50, 8747-8750.  doi: 10.1039/C4CC03024A

    12. [12]

      Tang, S.; Zadeh, E. H. G.; Kim, B.; Toomey, N. T.; Bondarc, M. V.; Belfield, K. D. Protein-induced fluorescence enhancement of two-photon excitable water-soluble diketopyrrolopyrroles. Org. Biomol. Chem. 2017, 15, 6511-6519.  doi: 10.1039/C7OB01397C

    13. [13]

      Zong, S.; Wang, X.; Lin, W.; Liu, S.; Zhang, W. Simple D A D structural bisbithiophenyl diketopyrrolopyrrole as efficient bioimaging and photothermal agents. Bioconjugate Chem. 2018, 29, 2619-2627.  doi: 10.1021/acs.bioconjchem.8b00333

    14. [14]

      Zeng, W.; Zhou, Q.; Zhang, H.; Qi, X. One-coat epoxy coating development for the improvement of UV stability by DPP pigments. Dyes Pigments 2018, 151, 157-164.  doi: 10.1016/j.dyepig.2017.12.058

    15. [15]

      Qu, S.; Tian, H. Diketopyrrolopyrrole (DPP)-based materials for organic photovoltaics. Chem. Commun. 2012, 48, 3039-3051.  doi: 10.1039/c2cc17886a

    16. [16]

      Yang, J.; Chen, J.; Sun, Y.; Shi, L.; Guo, Y.; Wang, S.; Liu, Y. Design and synthesis of novel conjugated polymers for applications in organic field-effect transistors. Acta Polymerica Sinica (in Chinese) 2017, 7, 1082-1096.  doi: 10.11777/j.issn1000-3304.2017.17020

    17. [17]

      Li, W.; Hendriks, K. H.; Wienk, M. M.; Janssen, R. A. J. Diketopyrrolopyrrole polymers for organic solar cells. Acc. Chem. Res. 2016, 49, 78-85.  doi: 10.1021/acs.accounts.5b00334

    18. [18]

      Zhang, Z.; Liu, Z.; Yan, K.; Li, H.; Liu, W.; Lu, X.; Li, H.; Chen, H.; Li, C. Photovoltaic properties of DPP-based two- and three-component polymers. Acta Polymerica Sinica (in Chinese) 2018, 2, 295-303.  doi: 10.11777/j.issn1000-3304.2018.17253

    19. [19]

      Deng, Y.; Xiao, H.; Qiao, H.; Tan, S. Synthesis and photoelectric performance of conjugated polymers with ullazine unit. Acta Polymerica Sinica (in Chinese) 2017, 6, 922-929.  doi: 10.11777/j.issn1000-3304.2017.16314

    20. [20]

      Qu, Y.; Wu, Y.; Gao, Y.; Qu, S.; Yang, L.; Hua, J. Diketopyrrolopyrrole-based fluorescent conjugated polymer for application of sensing fluoride ion and bioimaging. Sens. Actuators B 2014, 197, 13-19.  doi: 10.1016/j.snb.2014.02.065

    21. [21]

      Lin, S.; Liu, S.; Zou, H.; Zeng, W.; Wang, L.; Beuerman, R.; Cao, D. Synthesis of diketopyrrolopyrrole-containing conjugated polyelectrolytes for naked-eye detection of DNA. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 3882-3889.  doi: 10.1002/pola.24829

    22. [22]

      He, F.; Liu, L.; Li, L. Water-soluble conjugated polymers for amplified fluorescence detection of template-independent DNA elongation catalyzed by polymerase. Adv. Funct. Mater. 2011, 21, 3143-3149.  doi: 10.1002/adfm.201100216

    23. [23]

      Yang, J.; Wang, H.; Chen, J.; Huang, J.; Jiang, Y.; Zhang, J.; Shi, L.; Sun, Y.; Wei, Z.; Yu, G.; Guo, Y.; Wang, S.; Liu, Y. Bis-diketopyrrolopyrrole moiety as a promising building block to enable balanced ambipolar polymers for flexible transistors. Adv. Mater. 2017, 29, 1606162.  doi: 10.1002/adma.v29.22

    24. [24]

      Wang, B.; Sonar, P.; Manzhos, S.; Haick, H. Diketopyrrolopyrrole copolymers based chemical sensors for the detection and discrimination of volatile organic compounds. Sens. Actuators B 2017, 251, 49-56.  doi: 10.1016/j.snb.2017.04.167

    25. [25]

      Gao, Y.; Bai, J.; Sui, Y.; Han, Y.; Deng, Y.; Tian, H.; Geng, Y.; Wang, F. High mobility ambipolar diketopyrrolopyrrole-based conjugated polymers synthesized via direct arylation polycondensation: influence of thiophene moieties and side chains. Macromolecules 2018, 51, 8752-8760.  doi: 10.1021/acs.macromol.8b01112

    26. [26]

      Shen, H.; Kou, C.; He, M.; Yang, H.; Liu, K. Synthesis and surfactochromicity of 1,4-diketopyrrolo[3,4-c] pyrrole(DPP)-based anionic conjugated polyelectrolytes. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 739-751.  doi: 10.1002/pola.v52.6

    27. [27]

      Lee, J. B.; Kim, K. H.; Hong, C. S.; Choi, D. H. High-performance amorphous donor-acceptor conjugated polymers containing X-shaped anthracene-based monomer and 2,5-bis(2-octyldodecyl)pyrrolo[3,4-c] pyrrole-1,4(2h,5h)-dione for organic thin-film transistors. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 2809-2818.  doi: 10.1002/pola.26078

    28. [28]

      Sen, C. P.; Shrestha, R. G.; Shrestha, L. K.; Ariga, K.; Valiyaveettil, S. Low-band-gap BODIPY conjugated copolymers for sensing volatile organic compounds. Chem. Eur. J. 2015, 21, 17344-17354.  doi: 10.1002/chem.201502939

    29. [29]

      Zhang, G.; Liu, K.; Lia, Y.; Yang, M. Novel poly(phenylene ethynylene)-type conjugated polymers containing diketopyrrolopyrrole or triphenylpyrazoline units in the main chain: synthesis, characterization and photophysical properties. Polym. Int. 2009, 58, 665-673.  doi: 10.1002/pi.2576

    30. [30]

      Palai, A. K.; Mishra, S. P.; Kumar, A.; Srivastava, R.; Kamalasanan, M. N.; Patri, M. Synthesis and characterization of alternative donor-acceptor arranged poly(arylene ethynylene)s derived from 1,4-diketo-3,6-diphenylpyrrolo-[3,4-c] pyrrole (DPP). Eur. Polym. J. 2010, 46, 1940-1951.  doi: 10.1016/j.eurpolymj.2010.07.004

    31. [31]

      Zhao, Y. J.; Miao, K.; Zhu, Z.; Fan, L. J. Fluorescence quenching of a conjugated polymer by synergistic amine-carboxylic acid and π-π interactions for selective detection of aromatic amines in aqueous solution. ACS Sens. 2017, 2, 842-847.  doi: 10.1021/acssensors.7b00245

    32. [32]

      Wu, W.; Xu, H.; Shen, D.; Qiu, T.; Fan, L. J. One-step synthesis of a thienylenepyridazinylenethienylene-based coil-rod-coil copolymer with enhanced emission and improved fluorescence stability. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1636-1644.  doi: 10.1002/pola.26535

    33. [33]

      Zhang, H.; Shao, Y.; Chen, H.; Miao, K.; Fan, L. J. Poly(perylene-alt-phenyleneethynylene)s with multiple pendant ester groups in various lengths: synthesis, photophysics and selective hydrolysis. J. Polym. Sci., Part A: Polym. Chem. 2017, 55, 1880-1886.  doi: 10.1002/pola.v55.11

    34. [34]

      Xu, H.; Wu, W.; Chen, Y.; Qiu, T.; Fan, L. J. Construction of response patterns for metal cations by using a fluorescent conjugated polymer sensor array from parallel combinatorial synthesis. ACS Appl. Mater. Interfaces 2014, 6, 5041-5049.  doi: 10.1021/am5001272

    35. [35]

      Pang, Y.; Li, J.; Barton, T. J. Processible poly[(p-phenyleneethynylene)-alt-(2,5-thienyleneethynylene)]s of high luminescence: their synthesis and physical properties. J. Mater. Chem. 1998, 8, 1687-1690.  doi: 10.1039/a802032i

    36. [36]

      Magde, D.; Wong, R.; Seybold, P. G. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochem. Photobiol. 2002, 75, 327-334.  doi: 10.1562/0031-8655(2002)075<0327:FQYATR>2.0.CO;2

    37. [37]

      Beninatto, R.; Borsato, G.; Lucchi, O. D.; Fabris, F.; Lucchini, V.; Zendri, E. New 3,6-bis(biphenyl)diketopyrrolopyrrole dyes and pigments via Suzuki-Miyaura coupling. Dyes Pigments 2013, 96, 679-685.  doi: 10.1016/j.dyepig.2012.11.011

    38. [38]

      Guo, E. Q.; Ren, P. H.; Zhang, Y. L.; Zhang, H. C.; Yang, W. J. Diphenylamine end-capped 1,4-diketo-3,6-diphenylpyrrolo[3,4-c] pyrrole (DPP) derivatives with large two-photon absorption cross-sections and strong two-photon excitation red fluorescence. Chem. Commun. 2009, 5859-5861.  doi: 10.1039/b911808j

    39. [39]

      Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 1967, 89, 7017-7036.  doi: 10.1021/ja01002a035

    40. [40]

      Pliego, J. R. Potassium fluoride activation for the nucleophilic fluorination reaction using 18-crown-6, [2.2.2] -cryptand, pentaethylene glycol and comparison with the new hydro-crown scaffold: a theoretical analysis. Org. Biomol. Chem. 2018, 16, 3127-3137.  doi: 10.1039/C8OB00418H

    41. [41]

      Misra, R.; Bhattacharyya, S. P. Bhattacharyya, Intramolecular Charge Transfer: Theory and Applications, 1st edition, 2018, Wiley-VCH Verlag GmbH &Co. KGaA.

  • 加载中
    1. [1]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    2. [2]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    3. [3]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    4. [4]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    5. [5]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    6. [6]

      Supphachok ChanmungkalakulSyed Ali Abbas AbediFederico J. HernándezJianwei XuXiaogang Liu . The dark side of cyclooctatetraene (COT): Photophysics in the singlet states of “self-healing” dyes. Chinese Chemical Letters, 2024, 35(8): 109227-. doi: 10.1016/j.cclet.2023.109227

    7. [7]

      Chu ChuYuancheng QinCailing NiJianping Zou . Corrigendum to "Halogenated benzothiadiazole-based conjugated polymers as efficient photocatalysts for dye degradation and oxidative coupling of benzylamines" [Chinese Chemical Letters 33 (2022) 2736–2740]. Chinese Chemical Letters, 2025, 36(2): 110616-. doi: 10.1016/j.cclet.2024.110616

    8. [8]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    9. [9]

      Donghui WuQilin ZhaoJian SunXiurong Yang . Corrigendum to 'Fluorescence immunoassay based on alkaline phosphatase-induced in situ generation of fluorescent non-conjugated polymer dots' [Chin. Chem. Lett. 34 (2023) 107672]. Chinese Chemical Letters, 2024, 35(12): 109881-. doi: 10.1016/j.cclet.2024.109881

    10. [10]

      Jinyan ZhangFen LiuQian JinXueyi LiQiong ZhanMu ChenSisi WangZhenlong WuWencai YeLei Wang . Discovery of unusual phloroglucinol–triterpenoid adducts from Leptospermum scoparium and Xanthostemon chrysanthus by building blocks-based molecular networking. Chinese Chemical Letters, 2024, 35(6): 108881-. doi: 10.1016/j.cclet.2023.108881

    11. [11]

      Jiajing Wu Ru-Ling Tang Sheng-Ping Guo . Three types of promising functional building units for designing metal halide nonlinear optical crystals. Chinese Journal of Structural Chemistry, 2024, 43(6): 100291-100291. doi: 10.1016/j.cjsc.2024.100291

    12. [12]

      Xue ZhaoRui ZhaoQian LiuHenghui ChenJing WangYongfeng HuYan LiQiuming PengJohn S Tse . A p-d block synergistic effect enables robust electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(11): 109496-. doi: 10.1016/j.cclet.2024.109496

    13. [13]

      Yiwen LinYijie ChenChunhui DengNianrong Sun . Integration of resol/block-copolymer carbonization and machine learning: A convenient approach for precise monitoring of glycan-associated disorders. Chinese Chemical Letters, 2024, 35(12): 109813-. doi: 10.1016/j.cclet.2024.109813

    14. [14]

      Xinlong HanHuiying ZengChao-Jun Li . Trifluoromethylative homo-coupling of carbonyl compounds. Chinese Chemical Letters, 2025, 36(1): 109817-. doi: 10.1016/j.cclet.2024.109817

    15. [15]

      Xiaoman DangZhiying WuTangxin XiaoZhouyu WangLeyong Wang . Highly robust supramolecular polymer networks crosslinked by metallacycles. Chinese Chemical Letters, 2024, 35(12): 110208-. doi: 10.1016/j.cclet.2024.110208

    16. [16]

      Yaohua Li Qi Cao Xuanhua Li . Tailoring the configuration of polymer passivators in perovskite solar cells. Chinese Journal of Structural Chemistry, 2025, 44(2): 100413-100413. doi: 10.1016/j.cjsc.2024.100413

    17. [17]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    18. [18]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    19. [19]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    20. [20]

      Kongchuan WuDandan LuJianbin LinTing-Bin WenWei HaoKai TanHui-Jun Zhang . Elucidating ligand effects in rhodium(Ⅲ)-catalyzed arene–alkene coupling reactions. Chinese Chemical Letters, 2024, 35(5): 108906-. doi: 10.1016/j.cclet.2023.108906

Metrics
  • PDF Downloads(0)
  • Abstract views(775)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return