Diffusion Mode Transition between Gaussian and Non-Gaussian of Nanoparticles in Polymer Solutions
- Corresponding author: Ming Tian, tianm@mail.buct.edu.cn Jian-Guo Mi, mijg@mail.buct.edu.cn
Citation:
Yi Ye, Han Qin, Ming Tian, Jian-Guo Mi. Diffusion Mode Transition between Gaussian and Non-Gaussian of Nanoparticles in Polymer Solutions[J]. Chinese Journal of Polymer Science,
;2019, 37(7): 719-728.
doi:
10.1007/s10118-019-2237-9
Shen, H.; Tauzin, L. J.; Baiyasi, R.; Wang, W.; Moringo, N.; Shuang, B.; Landes, C. F. Single particle tracking: from theory to biophysical applications. Chem. Rev. 2017, 117, 7331-7376.
doi: 10.1021/acs.chemrev.6b00815
Zimmerman, S. B.; Minton, A. P. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 27-65.
doi: 10.1146/annurev.bb.22.060193.000331
Kessler, M. R. Polymer matrix composites: A perspective for a special issue of polymer reviews. Polym. Rev. 2012, 52, 229-233.
doi: 10.1080/15583724.2012.708004
Mackay, M. E.; Dao, T. T.; Tuteja, A.; Ho, D. L.; Van Horn, B.; Kim, H.; Hawker, C. J. Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nat. Mater. 2003, 2, 762-766.
doi: 10.1038/nmat999
Yu, Y. X.; Tian, A. W.; Gao, G. H. Prediction of collective diffusion coefficient of bovine serum albumin in aqueous electrolyte solution with hard-core two-Yukawa potential. Phys. Chem. Chem. Phys. 2005, 7, 2423-2428
doi: 10.1039/b500371g
Tuteja, A.; Mackay, M. E.; Narayanan, S.; Asokan, S.; Wong. M. S. Breakdown of the continuum Stokes-Einstein relation for nanoparticle diffusion. Nano Lett. 2007, 7, 1276-1281.
doi: 10.1021/nl070192x
Zhang, X.; Gray-Weale, A. A. Local hydrodynamics of solvent near diffusing dendrimers: A test of the new Stokes-Einstein relation. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1380-1392.
doi: 10.1002/polb.v55.18
Lungova, M.; Krutyeva, M.; Pyckhout-Hintzen, W.; Wischnewski, A.; Monkenbusch, M.; Allgaier, J.; Ohl, M.; Sharp, M.; Richter. D. Nanoscale motion of soft nanoparticles in unentangled and entangled polymer matrices. Phys. Rev. Lett. 2016, 117, 147803.
doi: 10.1103/PhysRevLett.117.147803
Cai, L. H.; Panyukov, S.; Rubinstein, M. Hopping diffusion of nanoparticles in polymer matrices. Macromolecules 2015, 48, 847-862.
doi: 10.1021/ma501608x
Kohli, I.; Mukhopadhyay, A. Diffusion of nanoparticles in semidilute polymer solutions: effect of different length scales. Macromolecules 2012, 45, 6143-6149.
doi: 10.1021/ma301237r
Grabowski, C. A.; Mukhopadhyay, A. Size effect of nanoparticle diffusion in a polymer melt. Macromolecules 2014, 47, 7238-7242.
doi: 10.1021/ma501670u
Griffin, P. J.; Bocharova, V.; Middleton, L. R.; Composto, R. J.; Clarke, N.; Schweizer, K. S.; Winey, K. I. Influence of the bound polymer layer on nanoparticle diffusion in polymer melts. ACS Macro Lett. 2016, 5, 1141-1145.
doi: 10.1021/acsmacrolett.6b00649
Brown W, Stepanek P. Dynamic light scattering of poly (n-laurylmethacrylate) in the melt and in concentrated ethyl acetate solutions. J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 1013-1024.
Ge, T.; Kalathi, J. T.; Halverson, J. D.; Grest, G. S.; Rubinstein, M. Nanoparticle motion in entangled melts of linear and nonconcatenated ring polymers. Macromolecules 2017, 50, 1749-1754.
doi: 10.1021/acs.macromol.6b02632
Petekidis, G.; Fytas, G.; Scherf, U.; Mullen, K.; Fleischer, G. Dynamics of poly(p-phenylene) ladder polymers in solution. J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 2211-2220.
doi: 10.1002/(ISSN)1099-0488
Eslami, H.; Rahimi, M.; Müller-Plathe, F. Molecular dynamics simulation of a silica nanoparticle in oligomeric poly(methyl methacrylate): a model system for studying the interphase thickness in a polymer-nanocomposite via different properties. Macromolecules 2013, 46, 8680-8692.
doi: 10.1021/ma401443v
Starr, F. W.; Schrøder, T. B.; Glotzer, S. C. Molecular dynamics simulation of a polymer melt with a nanoscopic particle. Macromolecules 2002, 35, 4481-4492.
doi: 10.1021/ma010626p
Volgin, I. V.; Larin, S. V.; Abad, E.; Lyulin, S. V. Molecular dynamics simulations of fullerene diffusion in polymer melts. Macromolecules 2017, 50, 2207-2218.
doi: 10.1021/acs.macromol.6b02050
de Gennes, P. G. in Scaling concepts in polymer physics, Cornell University Press, Ithaca, NY, 1979.
Brochard Wyart, F.; de Gennes, P. G. Viscosity at small scales in polymer melts. Eur. Phys. J. E 2000, 1, 93-97.
doi: 10.1007/s101890050011
Phillies, G. D. J.; Clomenil, D. Probe diffusion in polymer solutions under THETA and good conditions. Macromolecules 1993, 26, 167-170.
doi: 10.1021/ma00053a025
Cukier, R. I. Diffusion of Brownian spheres in semidilute polymer solutions. Macromolecules 1984, 17, 252-255.
doi: 10.1021/ma00132a023
Cai, L. H.; Panyukov, S.; Rubinstein, M. Mobility of nonsticky nanoparticles in polymer liquids. Macromolecules 2011, 44, 7853-7863.
doi: 10.1021/ma201583q
Cheng, S.; Xie, S. J.; Carrillo, J. M. Y.; Carroll, B.; Martin, H.; Cao, P. F.; Dadmun, M. D.; Sumpter, B. G.; Novikov, V. N.; Schweizer, K. S.; Sokolov. A. P. Big effect of small nanoparticles: a shift in paradigm for polymer nanocomposites. ACS Nano 2017, 11, 752-759.
doi: 10.1021/acsnano.6b07172
Fan, T. H.; Dhont, J. K. G.; Tuinier, R. Motion of a sphere through a polymer solution. Phys. Rev. E 2007, 75, 011803.
doi: 10.1103/PhysRevE.75.011803
Liu, J.; Cao, D.; Zhang, L. Molecular dynamics study on nanoparticle diffusion in polymer melts: a test of the Stokes- Einstein law. J. Phys. Chem. C 2008, 112, 6653-6661.
Yamamoto, U.; Schweizer, K. S. Theory of nanoparticle diffusion in unentangled and entangled polymer melts. J. Chem. Phys. 2011, 135, 224902.
doi: 10.1063/1.3664863
Yamamoto, U.; Schweizer, K. S. Microscopic theory of the long-time diffusivity and intermediate-time anomalous transport of a nanoparticle in polymer melts. Macromolecules 2014, 48, 152-163.
Ye, Y.; Ning, N.; Tian, M.; Zhang, L.; Mi, J. Nucleation and growth of hexagonal ice by dynamical density functional theory. Crys. Grow. Des. 2016, 17, 100-105.
Rex, M.; Löwen, H. Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps. Phys. Rev. Lett. 2008, 101, 148302.
doi: 10.1103/PhysRevLett.101.148302
van Teeffelen, S.; Likos, C. N.; Löwen, H. Colloidal crystal growth at externally imposed nucleation clusters. Phys. Rev. Lett. 2008, 100, 108302.
doi: 10.1103/PhysRevLett.100.108302
Wittkowski, R.; Löwen, H.; Brand, H. R. Extended dynamical density functional theory for colloidal mixtures with temperature gradients. J. Chem. Phys. 2012, 137, 224904.
doi: 10.1063/1.4769101
Rex, M.; Wensink, H. H.; Löwen, H. Dynamical density functional theory for anisotropic colloidal particles. Phys. Rev. E 2007, 76, 021403.
doi: 10.1103/PhysRevE.76.021403
Archer, A. J. Dynamical density functional theory for molecular and colloidal fluids: A microscopic approach to fluid mechanics. J. Chem. Phys. 2009, 130, 014509.
doi: 10.1063/1.3054633
Ye, Y.; Du, Z.; Tian, M.; Zhang, L.; Mi, J. Diffusive dynamics of polymer chains in an array of nanoposts. Phys. Chem. Chem. Phys. 2017, 19, 380-387.
doi: 10.1039/C6CP07217H
Yu, Y. X.; Wu, J. Extended test-particle method for predicting the inter- and intramolecular correlation functions of polymeric fluid. J. Chem. Phys. 2003, 118, 3835-3842.
doi: 10.1063/1.1539840
Bresme, F.; Quirke. N. Computer simulation study of the wetting behavior and line tensions of nanometer size particulates at a liquid-vapor interface. Phys. Rev. Lett. 1998, 80, 3791.
doi: 10.1103/PhysRevLett.80.3791
Holian, B. L.; Evans, D. J. Shear viscosities away from the melting line: A comparison of equilibrium and nonequilibrium molecular dynamics. J. Chem. Phys. 1983, 78, 5147-5150.
doi: 10.1063/1.445384
Fenwick, N. I. D.; Bresme, F.; Quirke, N. Computer simulation of a Langmuir trough experiment carried out on a nanoparticulate array. J. Chem. Phys. 2001, 114, 7274-7282.
doi: 10.1063/1.1357795
Yamamoto, U.; Schweizer, K. S. Spatially dependent relative diffusion of nanoparticles in polymer melts. J. Chem. Phys. 2013, 139, 064907.
doi: 10.1063/1.4817593
Kim, S.; Karrila, S. J. in Microhydrodynamics: Principles and selected applications, Butterworth-Heinemann, Boston, 1991.
Rotne, J.; Prager, S. Variational treatment of hydrodynamic interaction in polymers. J. Chem. Phys. 1969, 50, 4831-4837.
doi: 10.1063/1.1670977
Trokhymchuk, A.; Nezbeda, I.; Jirsák, J.; Henderson, D. Hard-sphere radial distribution function again. J. Chem. Phys. 2005, 123, 024501.
doi: 10.1063/1.1979488
Rosenfeld, Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 1989, 63, 980.
doi: 10.1103/PhysRevLett.63.980
Yu, Y X.; Wu, J. Z. Structures of hard-sphere fluids from a modified fundamental-measure theory. J. Chem. Phys. 2002, 117, 10156-10164.
doi: 10.1063/1.1520530
Davis, H. T. in Statistical mechanics of phases, interfaces, and thin films, Wiley-VCH, New York, 1996.
Kim, S. C.; Lee, S. H. A density functional perturbative approach for simple fluids: the structure of a nonuniform Lennard-Jones fluid at interfaces. J. Phys.: Condens. Matter 2004, 16, 6365.
doi: 10.1088/0953-8984/16/36/003
Lee, J. K.; Barker, J. A.; Pound, G. M. Surface structure and surface tension: Perturbation theory and Monte Carlo calculation. J. Chem. Phys. 1974, 60, 1976-1980.
doi: 10.1063/1.1681303
Peng, B.; Yu, Y. X. A density functional theory with a mean-field weight function: Applications to surface tension, adsorption, and Phase transition of a Lennard-Jones fluid in a slit-like pore. J. Phys. Chem. B 2008, 112, 15407-15416.
doi: 10.1021/jp805697p
Peng, B.; Yu, Y. X. A density functional theory for Lennard-Jones fluids in cylindrical pores and its applications to adsorption of nitrogen on MCM-41 materials. Langmuir 2008, 24, 12431-12439.
doi: 10.1021/la8024099
Tripathi, S.; Chapman, W. G. Microstructure and thermodynamics of inhomogeneous polymer blends and solutions. Phys. Rev. Lett. 2005, 94, 087801.
doi: 10.1103/PhysRevLett.94.087801
McGarrity, E. S.; Frischknecht, A. L.; Mackay, M. E. Phase behavior of polymer/nanoparticle blends near a substrate. J. Chem. Phys. 2008, 128, 154904.
doi: 10.1063/1.2899329
Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1-19.
doi: 10.1006/jcph.1995.1039
Martin, M. G.; Siepmann, J. I. Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes. J. Phys. Chem. B 1998, 102, 2569-2577.
doi: 10.1021/jp972543+
Curro, J. G.; Frischknecht, A. L. The structure of poly(ethylene oxide) liquids: comparison of integral equation theory with molecular dynamics simulations and neutron scattering. Polymer 2005, 46, 6500-6506.
doi: 10.1016/j.polymer.2005.03.123
Hayakawa, H.; Ichiki, K. Statistical theory of sedimentation of disordered suspensions. Phys. Rev. E 1995, 51, R3815.
doi: 10.1103/PhysRevE.51.R3815
Charbonneau, P.; Kurchan, J.; Parisi, G.; Urbani, P.; Zamponi, F. Glass and jamming transitions: From exact results to finite-dimensional descriptions. Ann. Rev. Conden. Matt. Phys. 2017, 8, 265-288.
doi: 10.1146/annurev-conmatphys-031016-025334
Charbonneau, P.; Jin, Y.; Parisi, G.; Zamponi, F. Hopping and the Stokes-Einstein relation breakdown in simple glass formers. P. Natl. Acad. Sci. USA 2014, 111, 15025-15030.
doi: 10.1073/pnas.1417182111
Boshoff, J. H. D.; Lobo, R. F.; Wagner, N. J. Influence of polymer motion, topology and simulation size on penetrant diffusion in amorphous, glassy polymers: Diffusion of helium in polypropylene. Macromolecules 2001, 34, 6107-6116..
doi: 10.1021/ma010255c
Kim, J.; Kim, C.; Sung, B. J. Simulation study of seemingly Fickian but heterogeneous dynamics of two dimensional colloids. Phys. Rev. Lett. 2013, 110, 047801.
doi: 10.1103/PhysRevLett.110.047801
Patti, A.; El Masri, D.; van Roij, R.; Dijkstra, M. Stringlike clusters and cooperative interlayer permeation in smectic liquid crystals formed by colloidal rods. Phys. Rev. Lett. 2009, 103, 248304.
doi: 10.1103/PhysRevLett.103.248304
Chengde Wang , Liping Huang , Shanshan Wang , Lihao Wu , Yi Wang , Jun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383
Shuang Liang , Jianjun Yao , Dan Liu , Mengli Zhou , Yong Cui , Zhaohui Wang . Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy. Chinese Chemical Letters, 2025, 36(3): 109856-. doi: 10.1016/j.cclet.2024.109856
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Jun Guo , Zhenbang Zhuang , Wanqiang Liu , Gang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803
Hongxia Li , Xiyang Wang , Du Qiao , Jiahao Li , Weiping Zhu , Honglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747
Yixin Zhang , Ting Wang , Jixiang Zhang , Pengyu Lu , Neng Shi , Liqiang Zhang , Weiran Zhu , Nongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619
Wenlong Li , Feishi Shan , Qingdong Bao , Qinghua Li , Hua Gao , Leyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060
Botao QU , Qian WANG , Xiaogang NING , Yuxin ZHOU , Ruiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416
Shenglan Zhou , Haijian Li , Hongyi Gao , Ang Li , Tian Li , Shanshan Cheng , Jingjing Wang , Jitti Kasemchainan , Jianhua Yi , Fengqi Zhao , Wengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142
Xueqi Zhang , Han Gao , Jianan Xu , Min Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148
Hengying Xiang , Nanping Deng , Lu Gao , Wen Yu , Bowen Cheng , Weimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182
Chen Chen , Jinzhou Zheng , Chaoqin Chu , Qinkun Xiao , Chaozheng He , Xi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739
Mingxin Song , Lijing Xie , Fangyuan Su , Zonglin Yi , Quangui Guo , Cheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266
Yihan Zhou , Duo Gao , Yaying Wang , Li Liang , Qingyu Zhang , Wenwen Han , Jie Wang , Chunliu Zhu , Xinxin Zhang , Yong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
Xiaobo Li , Qunyan Wu , Congzhi Wang , Jianhui Lan , Meng Zhang , Weiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359
Zheng Zhao , Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270
Qian Ren , Xue Dai , Ran Cen , Yang Luo , Mingyang Li , Ziyun Zhang , Qinghong Bai , Zhu Tao , Xin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022