Citation: Yi Ye, Han Qin, Ming Tian, Jian-Guo Mi. Diffusion Mode Transition between Gaussian and Non-Gaussian of Nanoparticles in Polymer Solutions[J]. Chinese Journal of Polymer Science, ;2019, 37(7): 719-728. doi: 10.1007/s10118-019-2237-9 shu

Diffusion Mode Transition between Gaussian and Non-Gaussian of Nanoparticles in Polymer Solutions

  • The dynamic density functional theory is applied to study the diffusion of nanoparticles in polymer solutions, in which different diffusion modes have been identified by exploiting the density and free energy evolutions. Under the condition of low polymer concentration, diffusion is controlled by particle free motion with a normal Gaussian type. As the concentration increases, the non-Gaussian behavior can be observed when the particle size is comparable to the correlation length of polymer chain. Particles need to penetrate through a cage and overcome an entropic barrier, where the hopping and the model-coupling diffusion coexist. Further increase of polymer concentration can result in complete restriction of the particle by surrounding polymer segments. In this case, the non-Gaussian process fades away, and particle diffusion is controlled by Rouse dynamics of polymer chains with the generalized Gaussian characteristics.
  • 加载中
    1. [1]

      Shen, H.; Tauzin, L. J.; Baiyasi, R.; Wang, W.; Moringo, N.; Shuang, B.; Landes, C. F. Single particle tracking: from theory to biophysical applications. Chem. Rev. 2017, 117, 7331-7376.  doi: 10.1021/acs.chemrev.6b00815

    2. [2]

      Zimmerman, S. B.; Minton, A. P. Macromolecular crowding: biochemical, biophysical, and physiological consequences. Annu. Rev. Biophys. Biomol. Struct. 1993, 22, 27-65.  doi: 10.1146/annurev.bb.22.060193.000331

    3. [3]

      Kessler, M. R. Polymer matrix composites: A perspective for a special issue of polymer reviews. Polym. Rev. 2012, 52, 229-233.  doi: 10.1080/15583724.2012.708004

    4. [4]

      Mackay, M. E.; Dao, T. T.; Tuteja, A.; Ho, D. L.; Van Horn, B.; Kim, H.; Hawker, C. J. Nanoscale effects leading to non-Einstein-like decrease in viscosity. Nat. Mater. 2003, 2, 762-766.  doi: 10.1038/nmat999

    5. [5]

      Yu, Y. X.; Tian, A. W.; Gao, G. H. Prediction of collective diffusion coefficient of bovine serum albumin in aqueous electrolyte solution with hard-core two-Yukawa potential. Phys. Chem. Chem. Phys. 2005, 7, 2423-2428  doi: 10.1039/b500371g

    6. [6]

      Tuteja, A.; Mackay, M. E.; Narayanan, S.; Asokan, S.; Wong. M. S. Breakdown of the continuum Stokes-Einstein relation for nanoparticle diffusion. Nano Lett. 2007, 7, 1276-1281.  doi: 10.1021/nl070192x

    7. [7]

      Zhang, X.; Gray-Weale, A. A. Local hydrodynamics of solvent near diffusing dendrimers: A test of the new Stokes-Einstein relation. J. Polym. Sci., Part B: Polym. Phys. 2017, 55, 1380-1392.  doi: 10.1002/polb.v55.18

    8. [8]

      Lungova, M.; Krutyeva, M.; Pyckhout-Hintzen, W.; Wischnewski, A.; Monkenbusch, M.; Allgaier, J.; Ohl, M.; Sharp, M.; Richter. D. Nanoscale motion of soft nanoparticles in unentangled and entangled polymer matrices. Phys. Rev. Lett. 2016, 117, 147803.  doi: 10.1103/PhysRevLett.117.147803

    9. [9]

      Cai, L. H.; Panyukov, S.; Rubinstein, M. Hopping diffusion of nanoparticles in polymer matrices. Macromolecules 2015, 48, 847-862.  doi: 10.1021/ma501608x

    10. [10]

      Kohli, I.; Mukhopadhyay, A. Diffusion of nanoparticles in semidilute polymer solutions: effect of different length scales. Macromolecules 2012, 45, 6143-6149.  doi: 10.1021/ma301237r

    11. [11]

      Grabowski, C. A.; Mukhopadhyay, A. Size effect of nanoparticle diffusion in a polymer melt. Macromolecules 2014, 47, 7238-7242.  doi: 10.1021/ma501670u

    12. [12]

      Griffin, P. J.; Bocharova, V.; Middleton, L. R.; Composto, R. J.; Clarke, N.; Schweizer, K. S.; Winey, K. I. Influence of the bound polymer layer on nanoparticle diffusion in polymer melts. ACS Macro Lett. 2016, 5, 1141-1145.  doi: 10.1021/acsmacrolett.6b00649

    13. [13]

      Brown W, Stepanek P. Dynamic light scattering of poly (n-laurylmethacrylate) in the melt and in concentrated ethyl acetate solutions. J. Polym. Sci., Part B: Polym. Phys. 1997, 35, 1013-1024.

    14. [14]

      Ge, T.; Kalathi, J. T.; Halverson, J. D.; Grest, G. S.; Rubinstein, M. Nanoparticle motion in entangled melts of linear and nonconcatenated ring polymers. Macromolecules 2017, 50, 1749-1754.  doi: 10.1021/acs.macromol.6b02632

    15. [15]

      Petekidis, G.; Fytas, G.; Scherf, U.; Mullen, K.; Fleischer, G. Dynamics of poly(p-phenylene) ladder polymers in solution. J. Polym. Sci., Part B: Polym. Phys. 1999, 37, 2211-2220.  doi: 10.1002/(ISSN)1099-0488

    16. [16]

      Eslami, H.; Rahimi, M.; Müller-Plathe, F. Molecular dynamics simulation of a silica nanoparticle in oligomeric poly(methyl methacrylate): a model system for studying the interphase thickness in a polymer-nanocomposite via different properties. Macromolecules 2013, 46, 8680-8692.  doi: 10.1021/ma401443v

    17. [17]

      Starr, F. W.; Schrøder, T. B.; Glotzer, S. C. Molecular dynamics simulation of a polymer melt with a nanoscopic particle. Macromolecules 2002, 35, 4481-4492.  doi: 10.1021/ma010626p

    18. [18]

      Volgin, I. V.; Larin, S. V.; Abad, E.; Lyulin, S. V. Molecular dynamics simulations of fullerene diffusion in polymer melts. Macromolecules 2017, 50, 2207-2218.  doi: 10.1021/acs.macromol.6b02050

    19. [19]

      de Gennes, P. G. in Scaling concepts in polymer physics, Cornell University Press, Ithaca, NY, 1979.

    20. [20]

      Brochard Wyart, F.; de Gennes, P. G. Viscosity at small scales in polymer melts. Eur. Phys. J. E 2000, 1, 93-97.  doi: 10.1007/s101890050011

    21. [21]

      Phillies, G. D. J.; Clomenil, D. Probe diffusion in polymer solutions under THETA and good conditions. Macromolecules 1993, 26, 167-170.  doi: 10.1021/ma00053a025

    22. [22]

      Cukier, R. I. Diffusion of Brownian spheres in semidilute polymer solutions. Macromolecules 1984, 17, 252-255.  doi: 10.1021/ma00132a023

    23. [23]

      Cai, L. H.; Panyukov, S.; Rubinstein, M. Mobility of nonsticky nanoparticles in polymer liquids. Macromolecules 2011, 44, 7853-7863.  doi: 10.1021/ma201583q

    24. [24]

      Cheng, S.; Xie, S. J.; Carrillo, J. M. Y.; Carroll, B.; Martin, H.; Cao, P. F.; Dadmun, M. D.; Sumpter, B. G.; Novikov, V. N.; Schweizer, K. S.; Sokolov. A. P. Big effect of small nanoparticles: a shift in paradigm for polymer nanocomposites. ACS Nano 2017, 11, 752-759.  doi: 10.1021/acsnano.6b07172

    25. [25]

      Fan, T. H.; Dhont, J. K. G.; Tuinier, R. Motion of a sphere through a polymer solution. Phys. Rev. E 2007, 75, 011803.  doi: 10.1103/PhysRevE.75.011803

    26. [26]

      Liu, J.; Cao, D.; Zhang, L. Molecular dynamics study on nanoparticle diffusion in polymer melts: a test of the Stokes- Einstein law. J. Phys. Chem. C 2008, 112, 6653-6661.

    27. [27]

      Yamamoto, U.; Schweizer, K. S. Theory of nanoparticle diffusion in unentangled and entangled polymer melts. J. Chem. Phys. 2011, 135, 224902.  doi: 10.1063/1.3664863

    28. [28]

      Yamamoto, U.; Schweizer, K. S. Microscopic theory of the long-time diffusivity and intermediate-time anomalous transport of a nanoparticle in polymer melts. Macromolecules 2014, 48, 152-163.

    29. [29]

      Ye, Y.; Ning, N.; Tian, M.; Zhang, L.; Mi, J. Nucleation and growth of hexagonal ice by dynamical density functional theory. Crys. Grow. Des. 2016, 17, 100-105.

    30. [30]

      Rex, M.; Löwen, H. Dynamical density functional theory with hydrodynamic interactions and colloids in unstable traps. Phys. Rev. Lett. 2008, 101, 148302.  doi: 10.1103/PhysRevLett.101.148302

    31. [31]

      van Teeffelen, S.; Likos, C. N.; Löwen, H. Colloidal crystal growth at externally imposed nucleation clusters. Phys. Rev. Lett. 2008, 100, 108302.  doi: 10.1103/PhysRevLett.100.108302

    32. [32]

      Wittkowski, R.; Löwen, H.; Brand, H. R. Extended dynamical density functional theory for colloidal mixtures with temperature gradients. J. Chem. Phys. 2012, 137, 224904.  doi: 10.1063/1.4769101

    33. [33]

      Rex, M.; Wensink, H. H.; Löwen, H. Dynamical density functional theory for anisotropic colloidal particles. Phys. Rev. E 2007, 76, 021403.  doi: 10.1103/PhysRevE.76.021403

    34. [34]

      Archer, A. J. Dynamical density functional theory for molecular and colloidal fluids: A microscopic approach to fluid mechanics. J. Chem. Phys. 2009, 130, 014509.  doi: 10.1063/1.3054633

    35. [35]

      Ye, Y.; Du, Z.; Tian, M.; Zhang, L.; Mi, J. Diffusive dynamics of polymer chains in an array of nanoposts. Phys. Chem. Chem. Phys. 2017, 19, 380-387.  doi: 10.1039/C6CP07217H

    36. [36]

      Yu, Y. X.; Wu, J. Extended test-particle method for predicting the inter- and intramolecular correlation functions of polymeric fluid. J. Chem. Phys. 2003, 118, 3835-3842.  doi: 10.1063/1.1539840

    37. [37]

      Bresme, F.; Quirke. N. Computer simulation study of the wetting behavior and line tensions of nanometer size particulates at a liquid-vapor interface. Phys. Rev. Lett. 1998, 80, 3791.  doi: 10.1103/PhysRevLett.80.3791

    38. [38]

      Holian, B. L.; Evans, D. J. Shear viscosities away from the melting line: A comparison of equilibrium and nonequilibrium molecular dynamics. J. Chem. Phys. 1983, 78, 5147-5150.  doi: 10.1063/1.445384

    39. [39]

      Fenwick, N. I. D.; Bresme, F.; Quirke, N. Computer simulation of a Langmuir trough experiment carried out on a nanoparticulate array. J. Chem. Phys. 2001, 114, 7274-7282.  doi: 10.1063/1.1357795

    40. [40]

      Yamamoto, U.; Schweizer, K. S. Spatially dependent relative diffusion of nanoparticles in polymer melts. J. Chem. Phys. 2013, 139, 064907.  doi: 10.1063/1.4817593

    41. [41]

      Kim, S.; Karrila, S. J. in Microhydrodynamics: Principles and selected applications, Butterworth-Heinemann, Boston, 1991.

    42. [42]

      Rotne, J.; Prager, S. Variational treatment of hydrodynamic interaction in polymers. J. Chem. Phys. 1969, 50, 4831-4837.  doi: 10.1063/1.1670977

    43. [43]

      Trokhymchuk, A.; Nezbeda, I.; Jirsák, J.; Henderson, D. Hard-sphere radial distribution function again. J. Chem. Phys. 2005, 123, 024501.  doi: 10.1063/1.1979488

    44. [44]

      Rosenfeld, Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture and density-functional theory of freezing. Phys. Rev. Lett. 1989, 63, 980.  doi: 10.1103/PhysRevLett.63.980

    45. [45]

      Yu, Y X.; Wu, J. Z. Structures of hard-sphere fluids from a modified fundamental-measure theory. J. Chem. Phys. 2002, 117, 10156-10164.  doi: 10.1063/1.1520530

    46. [46]

      Davis, H. T. in Statistical mechanics of phases, interfaces, and thin films, Wiley-VCH, New York, 1996.

    47. [47]

      Kim, S. C.; Lee, S. H. A density functional perturbative approach for simple fluids: the structure of a nonuniform Lennard-Jones fluid at interfaces. J. Phys.: Condens. Matter 2004, 16, 6365.  doi: 10.1088/0953-8984/16/36/003

    48. [48]

      Lee, J. K.; Barker, J. A.; Pound, G. M. Surface structure and surface tension: Perturbation theory and Monte Carlo calculation. J. Chem. Phys. 1974, 60, 1976-1980.  doi: 10.1063/1.1681303

    49. [49]

      Peng, B.; Yu, Y. X. A density functional theory with a mean-field weight function: Applications to surface tension, adsorption, and Phase transition of a Lennard-Jones fluid in a slit-like pore. J. Phys. Chem. B 2008, 112, 15407-15416.  doi: 10.1021/jp805697p

    50. [50]

      Peng, B.; Yu, Y. X. A density functional theory for Lennard-Jones fluids in cylindrical pores and its applications to adsorption of nitrogen on MCM-41 materials. Langmuir 2008, 24, 12431-12439.  doi: 10.1021/la8024099

    51. [51]

      Tripathi, S.; Chapman, W. G. Microstructure and thermodynamics of inhomogeneous polymer blends and solutions. Phys. Rev. Lett. 2005, 94, 087801.  doi: 10.1103/PhysRevLett.94.087801

    52. [52]

      McGarrity, E. S.; Frischknecht, A. L.; Mackay, M. E. Phase behavior of polymer/nanoparticle blends near a substrate. J. Chem. Phys. 2008, 128, 154904.  doi: 10.1063/1.2899329

    53. [53]

      Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 1995, 117, 1-19.  doi: 10.1006/jcph.1995.1039

    54. [54]

      Martin, M. G.; Siepmann, J. I. Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes. J. Phys. Chem. B 1998, 102, 2569-2577.  doi: 10.1021/jp972543+

    55. [55]

      Curro, J. G.; Frischknecht, A. L. The structure of poly(ethylene oxide) liquids: comparison of integral equation theory with molecular dynamics simulations and neutron scattering. Polymer 2005, 46, 6500-6506.  doi: 10.1016/j.polymer.2005.03.123

    56. [56]

      Hayakawa, H.; Ichiki, K. Statistical theory of sedimentation of disordered suspensions. Phys. Rev. E 1995, 51, R3815.  doi: 10.1103/PhysRevE.51.R3815

    57. [57]

      Charbonneau, P.; Kurchan, J.; Parisi, G.; Urbani, P.; Zamponi, F. Glass and jamming transitions: From exact results to finite-dimensional descriptions. Ann. Rev. Conden. Matt. Phys. 2017, 8, 265-288.  doi: 10.1146/annurev-conmatphys-031016-025334

    58. [58]

      Charbonneau, P.; Jin, Y.; Parisi, G.; Zamponi, F. Hopping and the Stokes-Einstein relation breakdown in simple glass formers. P. Natl. Acad. Sci. USA 2014, 111, 15025-15030.  doi: 10.1073/pnas.1417182111

    59. [59]

      Boshoff, J. H. D.; Lobo, R. F.; Wagner, N. J. Influence of polymer motion, topology and simulation size on penetrant diffusion in amorphous, glassy polymers: Diffusion of helium in polypropylene. Macromolecules 2001, 34, 6107-6116..  doi: 10.1021/ma010255c

    60. [60]

      Kim, J.; Kim, C.; Sung, B. J. Simulation study of seemingly Fickian but heterogeneous dynamics of two dimensional colloids. Phys. Rev. Lett. 2013, 110, 047801.  doi: 10.1103/PhysRevLett.110.047801

    61. [61]

      Patti, A.; El Masri, D.; van Roij, R.; Dijkstra, M. Stringlike clusters and cooperative interlayer permeation in smectic liquid crystals formed by colloidal rods. Phys. Rev. Lett. 2009, 103, 248304.  doi: 10.1103/PhysRevLett.103.248304

  • 加载中
    1. [1]

      Chengde WangLiping HuangShanshan WangLihao WuYi WangJun Dong . A distinction of gliomas at cellular and tissue level by surface-enhanced Raman scattering spectroscopy. Chinese Chemical Letters, 2024, 35(5): 109383-. doi: 10.1016/j.cclet.2023.109383

    2. [2]

      Shuang LiangJianjun YaoDan LiuMengli ZhouYong CuiZhaohui Wang . Tumor-responsive covalent organic polymeric nanoparticles enhancing STING activation for cancer immunotherapy. Chinese Chemical Letters, 2025, 36(3): 109856-. doi: 10.1016/j.cclet.2024.109856

    3. [3]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    4. [4]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    5. [5]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    6. [6]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    7. [7]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    8. [8]

      Yixin ZhangTing WangJixiang ZhangPengyu LuNeng ShiLiqiang ZhangWeiran ZhuNongyue He . Formation mechanism for stable system of nanoparticle/protein corona and phospholipid membrane. Chinese Chemical Letters, 2024, 35(4): 108619-. doi: 10.1016/j.cclet.2023.108619

    9. [9]

      Wenlong LiFeishi ShanQingdong BaoQinghua LiHua GaoLeyong Wang . Supramolecular assembly nanoparticle for trans-epithelial treatment of keratoconus. Chinese Chemical Letters, 2024, 35(10): 110060-. doi: 10.1016/j.cclet.2024.110060

    10. [10]

      Botao QUQian WANGXiaogang NINGYuxin ZHOURuiping ZHANG . Deeply penetrating photoacoustic imaging in tumor tissues based on dual-targeted melanin nanoparticle. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1025-1032. doi: 10.11862/CJIC.20230416

    11. [11]

      Shenglan ZhouHaijian LiHongyi GaoAng LiTian LiShanshan ChengJingjing WangJitti KasemchainanJianhua YiFengqi ZhaoWengang Qu . Recent advances in metal-loaded MOFs photocatalysts: From single atom, cluster to nanoparticle. Chinese Chemical Letters, 2025, 36(1): 110142-. doi: 10.1016/j.cclet.2024.110142

    12. [12]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    13. [13]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

    14. [14]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    15. [15]

      Mingxin SongLijing XieFangyuan SuZonglin YiQuangui GuoCheng-Meng Chen . New insights into the effect of hard carbons microstructure on the diffusion of sodium ions into closed pores. Chinese Chemical Letters, 2024, 35(6): 109266-. doi: 10.1016/j.cclet.2023.109266

    16. [16]

      Yihan ZhouDuo GaoYaying WangLi LiangQingyu ZhangWenwen HanJie WangChunliu ZhuXinxin ZhangYong Gan . Worm-like micelles facilitate the intestinal mucus diffusion and drug accumulation for enhancing colorectal cancer therapy. Chinese Chemical Letters, 2024, 35(6): 108967-. doi: 10.1016/j.cclet.2023.108967

    17. [17]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    18. [18]

      Xiaobo LiQunyan WuCongzhi WangJianhui LanMeng ZhangWeiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359

    19. [19]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    20. [20]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

Metrics
  • PDF Downloads(0)
  • Abstract views(741)
  • HTML views(11)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return