Citation: Emine Gul Cansu-Ergun. Covering the More Visible Region by Electrochemical Copolymerization of Carbazole and Benzothiadiazole Based Donor-Acceptor Type Monomers[J]. Chinese Journal of Polymer Science, ;2019, 37(1): 28-35. doi: 10.1007/s10118-019-2181-8 shu

Covering the More Visible Region by Electrochemical Copolymerization of Carbazole and Benzothiadiazole Based Donor-Acceptor Type Monomers

  • Corresponding author: Emine Gul Cansu-Ergun, egulcansu@baskent.edu.tr
  • Received Date: 22 June 2018
    Revised Date: 10 August 2018
    Accepted Date: 13 August 2018
    Available Online: 5 September 2018

  • An electrochromic copolymer film of 2-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-6-yl)-7-(3,3-dihexyl-3,4-dihydro-2H-thieno[3,4-b][1,4]dioxepin-8-yl)-9H-carbazole ( M1 ) and 4,7-bis(thiophen-2-yl)benzo[c][1,2,5]thiadiazole ( M2 ) was prepared via electrochemical technique. The copolymerization was performed with one to one monomer feed ratio. Electrochemical and optical properties of the resulting copolymer film ( P3 ) and the homopolymer films of M1 and M2 ( P1 and P2 ) were investigated by using cyclic voltammetry and UV-Vis spectrometry techniques, and the corresponding results were compared. Incorporation of M1 and M2 into copolymer matrix was clearly observed on the resulting cyclic voltammograms and UV-Vis spectra. P3 covered the visible regions coming from both P1 and P2 , and exhibited a neutral state darker color than those of homopolymers. P3 film was found to have a multichromic behavior, appearing as brown in its neutral state while changing its color upon oxidation to dark-gray (at about 0.3 V), to blue (at about 0.6 V) and finally to grayish cyan (beyond 0.9 V), with a corresponding optical band gap of 1.65 eV.
  • 加载中
    1. [1]

      Pennisi, A.; Simone, F.; Barletta, G.; Di Marco, G.; Lanza, L. Preliminary test of a large electrochromic window. Electrochim. Acta 1999, 44, 3237-3243.  doi: 10.1016/S0013-4686(99)00042-0

    2. [2]

      Rauh, R. Electrochromic Windows: an overview. Electrochim. Acta 1999, 44, 3165-3176.  doi: 10.1016/S0013-4686(99)00034-1

    3. [3]

      Mortimer, R. G. Electrochromic materials. Chem. Soc. Rev. 1997, 26, 147-156.  doi: 10.1039/cs9972600147

    4. [4]

      Argun, A. A.; Aubert, P. H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C.L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R. Multicolored electrochromism in polymers: structures and devices. Chem. Mater. 2004, 16, 4401-4412.  doi: 10.1021/cm049669l

    5. [5]

      Mortimer, R. J.; Dyer, A. L.; Reynolds, J. R. Electrochromic organic and polymeric materials for display applications. Displays 2006, 27, 2-18.  doi: 10.1016/j.displa.2005.03.003

    6. [6]

      Bradley, D. D. C. Conjugated polymer electroluminescence. Synt. Met. 1993, 54, 401-415.  doi: 10.1016/0379-6779(93)91086-H

    7. [7]

      Kelly, F. M.; Meunier, L.; Cochrane, C.; Koncar, V. Polyaniline: application as solid state electrochromic in a flexible textile display. Displays 2013, 34, 1-7.  doi: 10.1016/j.displa.2012.10.001

    8. [8]

      Lee, K.; Povlich, L. K.; Kim, J. Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors. Analyst 2010, 135, 2179-2189.  doi: 10.1039/c0an00239a

    9. [9]

      Dance, Z. E. X.; Ahrens, M. J.; Vega, A. M.; Ricks, A. B.; McCamant, D. W.; Ratner, M. A.; Wasielewski, M.R. Direct observation of the preference of hole transfer over electron transfer for radical ion pair recombination in donor-bridge-acceptor molecules. J. Am. Chem. Soc. 2008, 130, 830-832.  doi: 10.1021/ja077386z

    10. [10]

      Sonmez, G.; Sonmez, H. B.; Shen, C. K. F.; Jost, R. W.; Rubin, Y.; Wudl, F. A processable green polymeric electrochromic. Macromolecules 2005, 38, 669-675.  doi: 10.1021/ma0484173

    11. [11]

      Zhou, H.; Yang, L.; Stuart, A. C.; Price, S. C.; Liu, S.; You, W. Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency. Angew. Chem. 2011, 50, 2885-2998.  doi: 10.1002/anie.201100453

    12. [12]

      Song, S.; Jin, Y.; Kim, S. H.; Shim, J. Y.; Son, S.; Kim, I.; Lee, K.; Suh, H. Synthesis and characterization of polyfluorenevinylene with cyano group and carbazole unit. J. Polym. Sci. Part A: Pol. Chem. 2009, 47, 6540-6551.  doi: 10.1002/pola.v47:23

    13. [13]

      Froehlich, J. D.; Young, R.; Nakamura, T.; Ohmori, Y.; Li, S.; Mochizuk, A. Synthesis of multi-functional POSS emitters for OLED applications. Chem. Mater. 2007, 19, 4991-4997.  doi: 10.1021/cm070726v

    14. [14]

      Usta, H.; Facchetti, A.; Marks, T. J. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors based on the indenofluorenebis(dicyanovinylene) core. J. Am. Chem. Soc. 2008, 130, 8580-8581.  doi: 10.1021/ja802266u

    15. [15]

      Yang, C.; Kim, J. Y.; Cho, S.; Lee, J. K.; Heeger, A. J.; Wudl, F. Functionalized methanofullerenes used as n-type materials in bulk-heterojunction polymer solar cells and in field-effect transistors. J. Am. Chem. Soc. 2008, 130, 6444-6450.  doi: 10.1021/ja710621j

    16. [16]

      Malitesta, C.; Losito, I.; Zambonin, P. G. Molecularly imprinted electrosynthesized polymers: new materials for biomimetic sensors. Anal. Chem. 1999, 71, 1366-1370.  doi: 10.1021/ac980674g

    17. [17]

      John, R.; Spencer, M.; Wallace, G. G.; Smyth, M. R. Development of a polypyrrole-based human serum albümin sensor. Anal. Chim. Acta 1991, 249, 381-385.  doi: 10.1016/S0003-2670(00)83010-X

    18. [18]

      Duan, C.; Huang, F.; Cao, Y. Recent development of push-pull conjugated polymers for bulk-heterojunction photovoltaics: rational design and fine tailoring of molecular structures. J. Mater. Chem. 2012, 22, 10416-10434.  doi: 10.1039/c2jm30470h

    19. [19]

      Zhou, H.; Yang, L.; You, W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 2012, 45, 607-632.  doi: 10.1021/ma201648t

    20. [20]

      Durmus, A.; Gunbas, G.; Camurlu, P.; Toppare, L. A neutral state green polymer with a superior transmissive light blue oxidized state. Chem. Commun. 2007, 0, 3246-3248.  doi: 10.1039/b704936f

    21. [21]

      Durmus, A.; Gunbas, G.; Toppare, L. New, highly stable electrochromic polymers from 3,4-ethylenedioxythiophene-bis-substituted quinoxalines toward greeen polymeric materials. Chem. Mater. 2007, 19, 6247-6251.  doi: 10.1021/cm702143c

    22. [22]

      Mei, J.; Bao, Z. Side chain engineering in solution processable conjugated polymers, Chem. Mater. 2014, 26, 604-615.

    23. [23]

      Kularatne, R. S.; Magurudeniya, H. D.; Sista, P.; Biewer, M. C.; Stefan, M. C. Donor-acceptor semiconducting polymers for organic solar cells. J. Polym. Sci. Part A: Pol. Chem. 2013, 51, 743-768.  doi: 10.1002/pola.26425

    24. [24]

      Hardeman, T.; Koeckelberghs, G. Synthesis of conjugated polymers by combining different coupling reactions. Polym. Chem. 2017, 8, 3999-4004.  doi: 10.1039/C7PY00624A

    25. [25]

      Xie, R.; Chen, Z.; Zhang, G.; Huang, Y.; Ying, L.; Huang, F.; Cao, Y. Synthesis and characterization of p-conjugated copolymers based on alkyltriazolyl substituted benzodithiophene. New J. Chem. 2016, 40, 4727-4734.  doi: 10.1039/C5NJ03174E

    26. [26]

      Akbayrak, M.; Cansu-Ergun, E. G.; Onal, A. M. Synthesis and electro-optical properties of a new copolymer based on EDOT and carbazole. Des. Monomers Pol. 2016, 19, 679-687.  doi: 10.1080/15685551.2016.1209627

    27. [27]

      Nie, G.; Qu, L.; Xu, J.; Zhang, S. Electrosyntheses and characterizations of a new soluble conducting copolymer of 5-cyanoindole and 3,4-ethylenedioxythiophene. Electrochim. Acta 2008, 53, 8351-8358.  doi: 10.1016/j.electacta.2008.06.058

    28. [28]

      Aydın, A.; Kaya, I. Syntheses and characterization of yellow and green light emitting novel polymers containing carbazole and electroactive moieties. Electrochim. Acta 2012, 65, 105-114.

    29. [29]

      Aydın, A.; Kaya, I. Syntheses of novel copolymers containing carbazole and their electrochromic propertiesç J. Electroanal. Chem. 2013, 691, 1-12.  doi: 10.1016/j.jelechem.2012.12.012

    30. [30]

      Ates, M.; Uludag, N. Carbazole derivative synthesis and their electropolymerization. J. Solid State Electrochem. 2016, 20, 2599-2612.  doi: 10.1007/s10008-016-3269-5

    31. [31]

      Carbas, B. B. Novel electrochromic copolymers based on 3-3’-dibromo-2-2’bithiophene and 3,4-ethylenedioxythiophene. Polymer 2017, 113, 180-186.  doi: 10.1016/j.polymer.2017.02.053

    32. [32]

      Zhou, W.; Xu, J.; Wei, Z.; Pu, S. Electrochemical copolymerization of dibenzofuran and 3-methylthiophene in boron trifluoride diethyl etherate. Chinese J. Polym. Sci. 2008, 26, 81-90.  doi: 10.1142/S0256767908002698

    33. [33]

      Cansu-Ergun, E. G.; Onal, A. M. Carbazole based electrochromic polymers bearing ethylenedioxy and propylenedioxy scaffolds. J. Electroanal. Chem. 2018, 815, 158-165.  doi: 10.1016/j.jelechem.2018.03.014

    34. [34]

      Cansu-Ergun, E. G.; Akbayrak, M.; Akdag, A.; Onal, A. M. Effect of thiophene units on the properties of donor-acceptor type monomers and polymers bearing thiophene-benzothiadiazole-scaffolds. J. Electrochem. Soc. 2016, 163, 153-158.

    35. [35]

      Zhao, H. P.; Tao, X. T.; Wang, F. Z.; Ren, Y.; Sun, X. Q.; Yang, J. X.; Yan, Y. X.; Zou, D. C.; Zhao, X.; Jiang, M. H. Structure and electronic properties of triphenylamine-substituted indolo[3,2-b]carbazole derivatives as hole-transporting materials for organic light-emitting diodes. Chem. Phys. Lett. 2007, 439, 132-137.  doi: 10.1016/j.cplett.2007.03.074

    36. [36]

      Bakalis, J.; Cook, A. R.; Asaoka, S.; Forster, M.; Scherf, U.; Miller, J. R. Polarons, compressed polarons, and bipolarons in conjugated polymers. J. Phys. Chem. C 2014, 118, 114-125.  doi: 10.1021/jp408910a

    37. [37]

      Kumar, A.; Welsh, D. M.; Morvant, M. C.; Piroux, F.; Abboud, K. A.; Reynolds, J. R. Conducting poly(3,4-alkylenedioxythiophene) derivatives as fast electrochromics with high contrast ratios. Chem. Mater. 1998, 10, 896-902.  doi: 10.1021/cm9706614

    38. [38]

      Beaujuge, P. M.; Reynolds, J. R. Color Control in p-conjugated organic polymers for use in electrochromic devices. Chem. Rev. 2010, 110, 268-320.  doi: 10.1021/cr900129a

  • 加载中
    1. [1]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    2. [2]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    3. [3]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    4. [4]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    5. [5]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    6. [6]

      Jiqing LiuQi DangLiting WangDejin WangLiang Tang . Applications of flexible electrochemical electrodes in wastewater treatment: A review. Chinese Chemical Letters, 2024, 35(8): 109277-. doi: 10.1016/j.cclet.2023.109277

    7. [7]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    8. [8]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    9. [9]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    10. [10]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    11. [11]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    12. [12]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    13. [13]

      Yang Yang Jing-Li Luo Xian-Zhu Fu . Water-oxidation intermediates enabling electrochemical propylene epoxidation. Chinese Journal of Structural Chemistry, 2024, 43(5): 100269-100269. doi: 10.1016/j.cjsc.2024.100269

    14. [14]

      Kailong ZhangChao ZhangLuanhui WuQidong YangJiadong ZhangGuang HuLiang SongGaoran LiWenlong Cai . Chloride molten salt derived attapulgite with ground-breaking electrochemical performance. Chinese Chemical Letters, 2024, 35(10): 109618-. doi: 10.1016/j.cclet.2024.109618

    15. [15]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    16. [16]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    17. [17]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    18. [18]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    19. [19]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    20. [20]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

Metrics
  • PDF Downloads(0)
  • Abstract views(672)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return