Citation: Zi-Jie Huang, Jing Jiang, Gi Xue, Dong-Shan Zhou. β-Phase Crystallization of Poly(vinylidene fluoride) in Poly(vinylidene fluoride)/Poly(ethyl methacrylate) Blends[J]. Chinese Journal of Polymer Science, ;2019, 37(1): 94-100. doi: 10.1007/s10118-019-2177-4 shu

β-Phase Crystallization of Poly(vinylidene fluoride) in Poly(vinylidene fluoride)/Poly(ethyl methacrylate) Blends

  • Corresponding author: Dong-Shan Zhou, dzhou@nju.edu.cn
  • Received Date: 31 May 2018
    Revised Date: 27 July 2018
    Accepted Date: 31 July 2018
    Available Online: 30 August 2018

  • The nature of the crystalline phase of poly(vinylidene fluoride) (PVDF) in compatible blends with poly(ethyl methacrylate) (PEMA) was investigated by using X-ray diffraction (XRD), infrared microscopy (IR) and differential scanning calorimetry (DSC). The β phase of PVDF was observed after quenching from the melt and further annealing above the glass transition temperature over a composition range. The PVDF/PEMA blend with weight ratio of 3:2 has formed higher content of PVDF β crystals than others. By taking advantage of fast cooling rate of ultrafast differential scanning calorimeter (UFDSC), the quenching process of blends was modeled and tested simultaneously, and the melting behavior of β crystals in all blends was investigated. Three types of crystallization behavior of β phase PVDF in blends were found after quenching-annealing at different temperatures.
  • 加载中
    1. [1]

      Abraham, K. M.; Alamgir, M. Li+-conductive solid polymer electrolytes with liquid-like conductivity. J. Electrochem. Soc. 1990, 137, 1657-1658.  doi: 10.1149/1.2086749

    2. [2]

      Passerini, S.; Rosolen, J. M.; Scrosati, B. Plasticized carbon electrodes of interest for lithium rocking chair batteries. J. Power Sources 1993, 45, 333-341.  doi: 10.1016/0378-7753(93)80022-H

    3. [3]

      Choe, H. S.; Giaccai, J.; Alamgir, M.; Abraham, K. M. Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes. Electrochim. Acta 1995, 40, 2289-2293.  doi: 10.1016/0013-4686(95)00180-M

    4. [4]

      Lovinger, A. J. Crystallization of the β phase of poly(vinylidene fluoride) from the melt. Polymer 1981, 22, 412-413.  doi: 10.1016/0032-3861(81)90058-6

    5. [5]

      Kim, J. C.; Yong, J. C.; Kim, Y. H. Factors determining the formation of the β crystalline phase of poly(vinylidene fluoride) in poly(vinylidene fluoride)-poly(methyl methacrylate) blends. Vib. Spectrosc 1995, 9, 147-159.  doi: 10.1016/0924-2031(94)00092-U

    6. [6]

      Salimi, A.; Yousefi, A. A. Analysis method: FTIR studies of β-phase crystal formation in stretched PVDF films. Polym. Test. 2003, 22, 699-704.  doi: 10.1016/S0142-9418(03)00003-5

    7. [7]

      Benz, M.; Euler, W. B.; Gregory, O. J. The role of solution phase water on the deposition of thin films of poly(vinylidene fluoride). Macromolecules 2002, 35, 2682-2688.  doi: 10.1021/ma011744f

    8. [8]

      Yang, J.; Wang, J.; Zhang, Q.; Chen, F.; Deng, H.; Wang, K.; Fu, Q. Cooperative effect of shear and nanoclay on the formation of polar phase in poly(vinylidene fluoride) and the resultant properties. Polymer 2011, 52), 4970-4978.  doi: 10.1016/j.polymer.2011.08.051

    9. [9]

      Li, M.; Stingelin, N.; Michels, J. J.; Spijkman, M. J.; Asadi, K.; Feldman, K.; Blom, P. W. M.; de Leeuw, D. M. Ferroelectric phase diagram of PVDF:PMMA. Macromolecules 2012, 45), 7477-7485.  doi: 10.1021/ma301460h

    10. [10]

      Sajkiewicz, P.; Wasiak, A.; Gocłowski, Z. Phase transitions during stretching of poly(vinylidene fluoride). Eur. Polym. J. 1999, 35, 423-429.  doi: 10.1016/S0014-3057(98)00136-0

    11. [11]

      Ferreira, A.; Costa, P.; Carvalho, H.; Nobrega, J. M.; Sencadas, V.; Lanceros-Mendez, S. Extrusion of poly(vinylidene fluoride) filaments: effect of the processing conditions and conductive inner core on the electroactive phase content and mechanical properties. J. Polym. Res. 2011, 18, 1653-1658.  doi: 10.1007/s10965-011-9570-1

    12. [12]

      Gonçalves, R.; Martins, P. M.; Caparrós, C.; Martins, P.; Benelmekki, M.; Botelho, G.; Lanceros-Mendez, S.; Lasheras, A.; Gutiérrez, J.; Barandiarán, J. M. Nucleation of the electroactive β-phase, dielectric and magnetic response of poly(vinylidene fluoride) composites with Fe2O3 nanoparticles. J. Non-Cryst. Solids 2013, 361, 93-99.  doi: 10.1016/j.jnoncrysol.2012.11.003

    13. [13]

      Voet, V. S. D.; Hermida-Merino, D.; ten Brinke, G.; Loos, K. Block copolymer route towards poly(vinylidene fluoride)/poly(methacrylic acid)/nickel nanocomposites. Rsc Advances 2013, 3, 7938-7946.  doi: 10.1039/c3ra40365c

    14. [14]

      Wu, Y.; Hsu, S. L.; Honeker, C.; Bravet, D. J.; Williams, D. S. The role of surface charge of nucleation agents on the crystallization behavior of poly(vinylidene fluoride). J. Phys. Chem. B 2012, 116, 7379-7388.  doi: 10.1021/jp3043494

    15. [15]

      Jia, N.; Xing, Q.; Xia, G.; Sun, J.; Song, R.; Huang, W. Enhanced β-crystalline phase in poly(vinylidene fluoride) films by polydopamine-coated BaTiO3 nanoparticles. Mater. Lett. 2015, 139, 212-215.  doi: 10.1016/j.matlet.2014.10.069

    16. [16]

      Yu, J. H.; Jiang, P. K.; Wu, C.; Wang, L. C.; Wu, X. F. Graphene nanocomposites based on poly(vinylidene fluoride): structure and properties. Polym. Compos. 2011, 32, 1483-1491.  doi: 10.1002/pc.v32.10

    17. [17]

      Leonard, C.; Halary, J. L.; Monnerie, L. Crystallization of poly(vinylidene fluoride) poly(methyl methacrylate) blends - Analysis of the molecular parameters controlling the nature of the poly(vinylinene fluoride) crystalline phase. Macromolecules 1988, 21, 2988-2994.  doi: 10.1021/ma00188a016

    18. [18]

      Guo, H. F.; Li, Z. S.; Dong, S. W.; Chen, W. J.; Deng, L.; Wang, Y. F.; Ying, D. J. Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications. Colloid. Surface B 2012, 96, 29-36.  doi: 10.1016/j.colsurfb.2012.03.014

    19. [19]

      Chaudhari, S.; Sharma, Y.; Archana, P. S.; Jose, R.; Ramakrishna, S.; Mhaisalkar, S.; Srinivasan, M. Electrospun polyaniline nanofibers web electrodes for supercapacitors. J. Appl. Polym. Sci. 2013, 129 1660-1668.  doi: 10.1002/app.v129.4

    20. [20]

      Leonard, C.; Halary, J. L.; Monnerie, L.; Broussoux, D.; Servet, B.; Micheron, F. FTIR evidence of beta-crystal phase formation in PVDF PMMA blends. Polym. Comm. 1983, 24 110-114.

    21. [21]

      Naber, R. C. G.; Tanase, C.; Blom, P. W. M.; Gelinck, G. H.; Marsman, A. W.; Touwslager, F. J.; Setayesh, S.; De Leeuw, D. M. High-performance solution-processed polymer ferroelectric field-effect transistors. Nat. Mater. 2005, 4, 243-248.  doi: 10.1038/nmat1329

    22. [22]

      Naber, R. C. G.; Asadi, K.; Blom, P. W. M.; De Leeuw, D. M.; De Boer, B. Organic nonvolatile memory devices based on ferroelectricity. Adv. Mater. 2010, 22, 933-945.  doi: 10.1002/adma.200900759

    23. [23]

      Khan, M. A.; Bhansali, U. S.; Alshareef, H. N. High-performance non-volatile organic ferroelectric memory on banknotes. Adv. Mater. 2012, 24, 2165-2170.  doi: 10.1002/adma.201200626

    24. [24]

      Asadi, K.; De Leeuw, D. M.; De Boer, B.; Blom, P. W. M. Organic non-volatile memories from ferroelectric phase-separated blends. Nat. Mater. 2008, 7, 547-550.  doi: 10.1038/nmat2207

    25. [25]

      Asadi, K.; Li, M.; Stingelin, N.; Blom, P. W. M.; De Leeuw, D. M. Crossbar memory array of organic bistable rectifying diodes for nonvolatile data storage. Appl. Phys. Lett. 2010, 97, 193308.  doi: 10.1063/1.3508948

    26. [26]

      Asadi, K.; Li, M.; Blom, P. W. M.; Kemerink, M.; De Leeuw, D. M. Organic ferroelectric opto-electronic memories. Mater. Today 2011, 14, 592-599.  doi: 10.1016/S1369-7021(11)70300-5

    27. [27]

      Feuillade, G.; Perche, P. Ion-conductive macromolecular gels and membranes for solid lithium cells. J. Appl. Electrochem. 1975, 5, 63-69.  doi: 10.1007/BF00625960

    28. [28]

      Han, H. S.; Kang, H. R.; Kim, S. W.; Kim, H. T. Phase-separated polymer electrolyte based on poly(vinyl chloride)/poly(ethyl methacrylate) blend. J. Power Sources 2002, 112, 461-468.  doi: 10.1016/S0378-7753(02)00436-6

    29. [29]

      Alsaigh, Z. Y.; Chen, P. Characterization of semicrystalline polymers by inverse gas-chromatography. 2. A blend of poly(vinylidene fluoride) and poly(ethylmethacrylate). Macromolecules 1991, 24, 3788-3795.  doi: 10.1021/ma00013a008

    30. [30]

      Jiang, J.; Zhuravlev, E.; Huang, Z.; Wei, L.; Xu, Q.; Shan, M.; Xue, G.; Zhou, D.; Schick, C.; Jiang, W. A transient polymorph transition of 4-cyano-4′-octyloxybiphenyl (8OCB) revealed by ultrafast differential scanning calorimetry (UFDSC). Soft Matter 2013, 9, 1488-1491.  doi: 10.1039/C2SM27012A

    31. [31]

      Jiang, J.; Zhuravlev, E.; Hu, W.-b.; Schick, C.; Zhou, D.-s. The effect of self-nucleation on isothermal crystallization kinetics of poly(butylene succinate) (PBS) investigated by differential fast scanning calorimetry. Chinese J. Polym. Sci. 2017, 35, 1009-1019.  doi: 10.1007/s10118-017-1942-5

    32. [32]

      Gregorio, R. Determination of the alpha, beta, and gamma crystalline phases of poly(vinylidene fluoride) films prepared at different conditions. J. Appl. Polym. Sci. 2006, 100, 3272-3279.  doi: 10.1002/(ISSN)1097-4628

    33. [33]

      Zhuravlev, E.; Schick, C. Fast scanning power compensated differential scanning nano-calorimeter: 1. The device. Thermochim. Acta 2010, 505, 1-13.  doi: 10.1016/j.tca.2010.03.019

    34. [34]

      Zhuravlev, E.; Schick, C. Fast scanning power compensated differential scanning nano-calorimeter: 2. Heat capacity analysis. Thermochim. Acta 2010, 505, 14-21.

    35. [35]

      Gradys, A.; Sajkiewicz, P.; Zhuravlev, E.; Schick, C. Kinetics of isothermal and non-isothermal crystallization of poly(vinylidene fluoride) by fast scanning calorimetry. Polymer 2016, 82, 40-48.  doi: 10.1016/j.polymer.2015.11.020

    36. [36]

      Wei, L.; Jiang, J.; Shan, M.; Chen, W.; Deng, Y.; Xue, G.; Zhou, D. Integration of ultrafast scanning calorimetry with micro-Raman spectroscopy for investigation of metastable materials. Rev. Sci. Instrum. 2014, 85, 074901.  doi: 10.1063/1.4889882

    37. [37]

      Zhuravlev, E.; Schmelzer, J. W. P.; Wunderlich, B.; Schick, C. Kinetics of nucleation and crystallization in poly(epsilon caprolactone) (PCL). Polymer 2011, 52, 1983-1997.  doi: 10.1016/j.polymer.2011.03.013

    38. [38]

      Wunderlich, B. in Crystal structure, Morphology, Defects. Vol. 1. Academic Press, New York, 1973, 1-552.

    39. [39]

      Hoffman, J. D.; Weeks, J. J. Melting process and the equilibrium melting temperature of polychlorotrifluoroethylene. Journal of Research of the National Bureau of Standards - A. Physics and Chemistry 1962, 66A, 13-28.  doi: 10.6028/jres.066A.003

    40. [40]

      Hellmuth, E.; Wunderlich, B. Superheating of linear high-polymer polyethylene crystals. J. Appl. Phys. 1965, 36, 3039-3044.  doi: 10.1063/1.1702924

    41. [41]

      Minakov, A.; Wurm, A.; Schick, C. Superheating in linear polymers studied by ultrafast nanocalorimetry. Eur. Polym. J. E 2007, 23, 43-53.

  • 加载中
    1. [1]

      Biao Fang Runwei Mo . PVDF-based solid-state battery. Chinese Journal of Structural Chemistry, 2024, 43(8): 100347-100347. doi: 10.1016/j.cjsc.2024.100347

    2. [2]

      Lingna WangChenxin TianRuobin DaiZhiwei Wang . Eco-friendly regeneration of end-of-life PVDF membrane with triethyl phosphate: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(9): 109356-. doi: 10.1016/j.cclet.2023.109356

    3. [3]

      Jian WangBaohui WangPin MaYifei ZhangHonghong GongBiyun PengSen LiangYunchuan XieHailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714

    4. [4]

      Xiaohan Zhang Bo Xiao . Facilitating ultra-fast lithium ion diffusion in face-centered cubic oxides via over-stoichiometric face-sharing configurations. Chinese Journal of Structural Chemistry, 2025, 44(2): 100419-100419. doi: 10.1016/j.cjsc.2024.100419

    5. [5]

      Wenli Xu Yingzhao Zhang Rui Wang Chenyang Liu Jialin Liu Xiangyu Huo Xinying Liu He Zhang Jianxu Ding . In-situ passivating surface defects of ultra-thin MAPbBr3 perovskite single crystal films for high performance photodetectors. Chinese Journal of Structural Chemistry, 2025, 44(1): 100454-100454. doi: 10.1016/j.cjsc.2024.100454

    6. [6]

      Yuhuan MengLong ZhangLequan WangJunming KangHongbin Lu . 20 nm-ultra-thin fluorosiloxane interphase layer enables dendrite-free, fast-charging, and flexible aqueous zinc metal batteries. Chinese Chemical Letters, 2024, 35(12): 110025-. doi: 10.1016/j.cclet.2024.110025

    7. [7]

      Jiakun Bai Junhui Jia Aisen Li . An elastic organic crystal with piezochromic luminescent behavior. Chinese Journal of Structural Chemistry, 2024, 43(6): 100323-100323. doi: 10.1016/j.cjsc.2024.100323

    8. [8]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    9. [9]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    10. [10]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    11. [11]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    12. [12]

      Xiumei LILinlin LIBo LIUYaru PAN . Syntheses, crystal structures, and characterizations of two cadmium(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 613-623. doi: 10.11862/CJIC.20240273

    13. [13]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    14. [14]

      Fengyu ZhangYali LiangZhangran YeLei DengYunna GuoPing QiuPeng JiaQiaobao ZhangLiqiang Zhang . Enhanced electrochemical performance of nanoscale single crystal NMC811 modification by coating LiNbO3. Chinese Chemical Letters, 2024, 35(5): 108655-. doi: 10.1016/j.cclet.2023.108655

    15. [15]

      Na WangWang LuoHuaiyi ShenHuakai LiZejiang XuZhiyuan YueChao ShiHengyun YeLeping Miao . Crystal engineering regulation achieving inverse temperature symmetry breaking ferroelasticity in a cationic displacement type hybrid perovskite system. Chinese Chemical Letters, 2024, 35(5): 108696-. doi: 10.1016/j.cclet.2023.108696

    16. [16]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    17. [17]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    18. [18]

      Zhi-Yuan YueHua-Kai LiNa WangShan-Shan LiuLe-Ping MiaoHeng-Yun YeChao Shi . Dehydration-triggered structural phase transition-associated ferroelectricity in a hybrid perovskite-type crystal. Chinese Chemical Letters, 2024, 35(10): 109355-. doi: 10.1016/j.cclet.2023.109355

    19. [19]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    20. [20]

      Yang LiYihan ChenJiaxin LuoQihuan LiYiwu QuanYixiang Cheng . Enhanced circularly polarized luminescence emission promoted by achiral dichroic oligomers of F8BT in cholesteric liquid crystal. Chinese Chemical Letters, 2024, 35(11): 109864-. doi: 10.1016/j.cclet.2024.109864

Metrics
  • PDF Downloads(0)
  • Abstract views(811)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return