Citation: Wei Yan, Ming-Qiu Zhang, Jie Yu, Sheng-Qiang Nie, Dai-Qin Zhang, Shu-Hao Qin. Synergistic Flame-retardant Effect of Epoxy Resin Combined with Phenethyl-bridged DOPO Derivative and Graphene Nanosheets[J]. Chinese Journal of Polymer Science, ;2019, 37(1): 79-88. doi: 10.1007/s10118-019-2175-6 shu

Synergistic Flame-retardant Effect of Epoxy Resin Combined with Phenethyl-bridged DOPO Derivative and Graphene Nanosheets

  • Corresponding author: Wei Yan, lrasyw@163.com Ming-Qiu Zhang, ceszmq@mail.sysu.edu.cn
  • Received Date: 28 March 2018
    Revised Date: 24 May 2018
    Accepted Date: 24 June 2018
    Available Online: 24 July 2018

  • Phenethyl-bridged DOPO derivative (DiDOPO) was combined with graphene nanosheets (GNSs) in epoxy resin (EP) to improve its flame retardancy. The results indicated that the introduction of only 1.5 wt% DiDOPO/1.5 wt% GNS in EP increased the limited oxygen index (LOI) from 21.8% to 32.2%, hence meeting UL 94 V-0 rating. The thermogravimetric analyses revealed that char yield rose in presence of GNSs to form thermally stable carbonaceous char. The decomposition and pyrolysis products in gas phase were characterized by thermogravimetry-Fourier transform infrared spectroscopy (TG-FTIR), and the release of large amounts of phosphorus was detected in the gas phase. The evaluation of flame-retardant effect by cone calorimetry demonstrated that GNSs improved the protective-barrier effect of fire residue of EP/DiDOPO/GNS. The latter was further confirmed by digital photography and scanning electron microscopy (SEM). Also, Raman spectroscopy showed that GNSs enhanced graphitization degree of the resin during combustion. Overall, the combination of DiDOPO with GNSs provides an effective way for developing high-performance resins with improved flame retardancy.
  • 加载中
    1. [1]

      Martins, M. S. S.; Schartel, B.; Magalhães, Fernão, D.; Pereira, C. M. C. The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites. Fire Mater. 2016, 301, 9-35.  doi: 10.1002/fam.2370

    2. [2]

      Zhang, X.; He, Q.; Gu, H.;Colorado, H. A.;Wei, S.; Guo, Z. Flame-retardant electrical conductive nanopolymers based on bisphenol F epoxy resin reinforced with nano polyanilines. ACS Appl. Mater. Interfaces 2013, 5(3), 898-910.  doi: 10.1021/am302563w

    3. [3]

      Rakotomalala, M.; Wagner, S.; Döring, M. Recent developments in halogen free flame retardants for epoxy resins for electrical and electronic applications. Materials 2010, 3(8), 4300-4327.  doi: 10.3390/ma3084300

    4. [4]

      Zhuang, R. C.; Yang, J.; Wang, D. Y.; Huang, Y. X. Simultaneously enhancing the flame retardancy and toughness of epoxy by lamellar dodecyl-ammonium dihydrogen phosphate. RSC Adv. 2015, 5(121), 100049-100053.  doi: 10.1039/C5RA18358H

    5. [5]

      Wang, X.; Kalali, E. N.; Wang, D. Y. Renewable cardanol-based surfactant modified layered double hydroxide as a flame retardant for epoxy resin. ACS Sustain. Chem. Eng. 2015, 3(12), 3281-3290.  doi: 10.1021/acssuschemeng.5b00871

    6. [6]

      Zotti, A.; Borriello, A.; Ricciardi, M.; Antonucci, V.; Giordano, M.; Zarrelli, M. Effects of sepiolite clay on degradation and fire behavior of a bisphenol A-based epoxy. Compos. Part B: Eng. 2015, 73, 139-148.  doi: 10.1016/j.compositesb.2014.12.019

    7. [7]

      Deng, L. L.; Shen, M. M.; Yu, J.; Wu, K.; Ha, C. Y. Preparation, Characterization, and Flame Retardancy of Novel Rosin-Based Siloxane Epoxy Resins. Ind. Eng. Chem. Res. 2012, 51(24), 8178-8184.  doi: 10.1021/ie201364q

    8. [8]

      Zang, L.; Wagner, S.; Ciesielski, M.; Müller, P.; Döring, M. Novel star-shaped and hyperbranched phosphorus-containing flame retardants in epoxy resins. Polym. Adv. Technol. 2011, 22(7), 1182-1191.  doi: 10.1002/pat.1990

    9. [9]

      Long, L. J.; Yin, J. B.; He, W. T.; Qin, S. H.; Yu, J. Influence of a phenethyl-bridged DOPO derivative on the flame retardancy, thermal properties, and mechanical properties of poly(lactic acid). Ind. Eng. Chem. Res. 2016, 55(40), 10803-10812.  doi: 10.1021/acs.iecr.6b02350

    10. [10]

      Chang, Q. F.; Long, L. J.; He, W. T.; Qin, S. H.; Yu, J. Thermal degradation behavior of PLA composites containing bis DOPO phosphonates. Thermochim. Acta 2016, 639, 84-90.  doi: 10.1016/j.tca.2016.07.006

    11. [11]

      Shree Meenakshi, K.; Pradeep Jaya Sudhan, E.; Ananda Kumar, S.; Umapathy, M. J. Development and characterization of novel DOPO based phosphorus tetraglycidyl epoxy nanocomposites for aerospace applications. Prog. Org. Coat. 2011, 72(3), 402-409.  doi: 10.1016/j.porgcoat.2011.05.013

    12. [12]

      Zhang, W. C.; Li, X. M.; Yang, R. J. Blowing-out effect in epoxy composites flame retarded by DOPO-POSS and its correlation with amide curing agents. Polym. Degrad. Stab. 2012, 97(8), 1314-1324.  doi: 10.1016/j.polymdegradstab.2012.05.020

    13. [13]

      Wang, T.; Wang, J.; Huo, S. Q.; Zhang, B.; Yang, S. Preparation and flame retardancy of DOPO-based epoxy resin containing bismaleimide. High. Perform. Polym. 2016, 28(9), 1090-1095.  doi: 10.1177/0954008316631591

    14. [14]

      Kiliaris, P.; Papaspyrides, C. D. Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Prog. Polym. Sci. 2010, 35(7), 902-958.  doi: 10.1016/j.progpolymsci.2010.03.001

    15. [15]

      Martino, L.; Guigo, N.; Van Berkel, J. G.; Sbirrazzuoli, N. Influence of organically modified montmorillonite and sepiolite clays on the physical properties of bio-based poly(ethylene 2,5-furandicarboxylate). Compos. Part B: Eng. 2017, 110, 96-105.  doi: 10.1016/j.compositesb.2016.11.008

    16. [16]

      Wang, D.; Zhou, K. Q.; Yang, W.; Xing, W. Y,; Hu, Y.; Gong, X. L. Surface modification of graphene with layered molybdenum disulfide and their synergistic reinforcement on reducing fire hazards of epoxy resins. Ind. Eng. Chem. Res. 2013, 52(50), 17882-17890.  doi: 10.1021/ie402441g

    17. [17]

      Li, P. P.; Zheng, Y. P.; Li, M. Z.; Fan, W. D.; Shi, T.; Wang, Y. D.; Zhang, A. B.; Wang, J. S. Enhanced flame-retardant property of epoxy composites filled with solvent-free and liquid-like graphene organic hybrid material decorated by zinc hydroxystannate boxes. Compos. Part A: Appl. S. 2016, 81, 172-181.  doi: 10.1016/j.compositesa.2015.11.013

    18. [18]

      Sang, B.; Li, Z. W.; Li, X. H.; Yu, L. G.; Zhang, Z. J. Graphene-based flame retardants: a review. J. Mater. Sci. 2016, 51(18), 8271-8295.  doi: 10.1007/s10853-016-0124-0

    19. [19]

      Wang, Z.; Tang, X. Z.; Yu, Z. Z.; Guo, P.; Song, H. H.; Du, X. S. Dispersion of graphene oxide and its flame retardancy effect on epoxy nanocomposites. Chinese J. Polym. Sci. 2011, 29(3), 368-376.  doi: 10.1007/s10118-011-1037-7

    20. [20]

      Liu, S.; Yan, H. Q.; Fang, Z. P.; Wang, H. Effect of graphene nanosheets on morphology, thermal stability and flame retardancy of epoxy resin. Compos. Sci. Technol. 2014, 90, 40-47.  doi: 10.1016/j.compscitech.2013.10.012

    21. [21]

      Liu, S.; Fang, Z. P.; Yan, H. Q.; Wang, H. Superior flame retardancy of epoxy resin by the combined addition of graphene nanosheets and DOPO. RSC Adv. 2016, 6(7), 5288-5295.  doi: 10.1039/C5RA25988F

    22. [22]

      Liu, S.; Fang, Z. P.; Yan, H. Q.; Chevali, V. S.; Wang, H. Synergistic flame retardancy effect of graphene nanosheets and traditional retardants on epoxy resin. Compos. Part A: Appl. S. 2016, 89, 26-32.  doi: 10.1016/j.compositesa.2016.03.012

    23. [23]

      Huang, W. J.; He, W. T.; Long, L. J.; Yan, W.; He, M.; Qin, S. H.; Yu, J. Highly efficient flame-retardant glass-fiber-reinforced polyamide 6T system based on a novel DOPO-based derivative: Flame retardancy, thermal decomposition, and pyrolysis behavior. Polym. Degrad. Stab. 2018, 148, 26-41.  doi: 10.1016/j.polymdegradstab.2018.01.008

    24. [24]

      Yan, W.; Yu, J.; Zhang, M. Q.; Qin, S. H.;Wang, T.; Huang, W. J.; Long, L. J. Flame-retardant effect of a phenethyl-bridged DOPO derivative and layered double hydroxides for epoxy resin. RSC Adv. 2017, 7(73), 46236-46245.  doi: 10.1039/C7RA08173A

    25. [25]

      Yao, Q.; Wang, J.; Mack, A. G. 2015, U.S. Pat., 9,012,546

    26. [26]

      Wang, X.; Hu, Y.; Song, L.; Xing, W. Y.; Lu, H. D.;Lv, P.; Jie, G. X. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 2010, 51(11), 2435-2445.  doi: 10.1016/j.polymer.2010.03.053

    27. [27]

      Kashiwagi, T.; Du, F.; Douglas, J. F.; Winey, K. I.; Harris, R. H. J.; Shields, J. R. Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 2005, 4(12), 928-933.  doi: 10.1038/nmat1502

    28. [28]

      Qiu, Y.; Qian, L.J.; Xi, W. Flame-retardant effect of a novel phosphaphenanthrene/triazine-trione bi-group compound on an epoxy thermoset and its pyrolysis behaviour. RSC Adv. 2016, 6(61), 56018-56027.  doi: 10.1039/C6RA10752D

    29. [29]

      Buczko, A.; Stelzig, T.; Bommer, L.; Rentsch, D.; Heneczkowski, M.; Gaan, S. Bridged DOPO derivatives as flame retardants for PA6. Polym. Degrad. Stab. 2014, 107, 158-165.  doi: 10.1016/j.polymdegradstab.2014.05.017

    30. [30]

      Wang, J. Y.; Qian, L. J.; Huang, Z. G.; Fang, Y. Y.; Qiu, Y. Synergistic flame-retardant behavior and mechanisms of aluminum poly-hexamethylenephosphinate and phosphaphenanthrene in epoxy resin. Polym. Degrad. Stab. 2016, 130, 173-181.  doi: 10.1016/j.polymdegradstab.2016.06.010

    31. [31]

      Brehme, S.; Schartel, B.; Goebbels, J.; Fischer, O.; Pospiech, D.; Bykov, Y.; Döring, M. Phosphorus polyester versus aluminium phosphinate in poly(butylene terephthalate) (PBT): Flame retardancy performance and mechanisms. Polym. Degrad. Stab. 2011, 96(5), 875-884.  doi: 10.1016/j.polymdegradstab.2011.01.035

    32. [32]

      Tang, S.; Wachtendorf, V.; Klack, P.; Qian, L. J.; Dong, Y. P.; Schartel, B. Enhanced flame-retardant effect of a montmorillonite/phosphaphenanthrene compound in an epoxy thermoset. RSC Adv. 2017, 7(2), 720-728.  doi: 10.1039/C6RA25070J

    33. [33]

      Brehme, S.; Köppl, T.; Schartel, B.; Altstädt, V. Competition in aluminium phosphinate-based halogen-free flame retardancy of poly(butylene terephthalate) and its glass-fibre composites. e-Polymers 2014, 14(3), 193-208.

    34. [34]

      Xu, W. H.; Wirasaputra, A.; Liu, S. M.; Yuan, Y. C.; Zhao, J. Q. Highly effective flame retarded epoxy resin cured by DOPO-based co-curing agent. Polym. Degrad. Stab. 2015, 122, 44-51.  doi: 10.1016/j.polymdegradstab.2015.10.012

    35. [35]

      Schartel, B.; Perret, B.; Dittrich, B.; Ciesielski, M.; Krämer, J.; Müller, P.; Altstädt, V.; Zang, L.; Döring, M. Flame retardancy of polymers: The role of specific reactions in the condensed phase. Macromol. Mater. Eng. 2016, 301(1), 9-35.  doi: 10.1002/mame.v301.1

    36. [36]

      Brehme, S.; Köppl, T.; Schartel, B.; Fischer, O.; Altstädt, V.; Pospiech, D.; Döring, M. Phosphorus polyester - an alternative to low-molecular-weight flame retardants in poly(butylene terephthalate)? Macromol. Chem. Phys. 2012, 213(22), 2386-2397.  doi: 10.1002/macp.201200072

    37. [37]

      Perret, B.; Schartel, B.; Stöß, K.; Ciesielski, M.; Diederichs, J.; Döring, M.; Krämer, J.; Altstädt, V. A new halogen-free flame retardant based on 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide for epoxy resins and their carbon fiber composites for the automotive and aviation industries. Macromol. Mater. Eng. 2011, 296(1), 14-30.  doi: 10.1002/mame.v296.1

    38. [38]

      Qian, X.D.; Song, L.; Yu, B.; Wang, B. B.; Yuan, B. H.; Shi, Y. Q.; Hu, Y.; Yuen, R. K. K. Novel organic-inorganic flame retardants containing exfoliated graphene: preparation and their performance on the flame retardancy of epoxy resins. J. Mater. Chem. A 2013, 1(23), 6822-6830.  doi: 10.1039/c3ta10416h

    39. [39]

      Wang, X.; Hu, Y.; Song, L.; Xing, W. Y.; Lu, H. D. Thermal degradation mechanism of flame retarded epoxy resins with a DOPO-substitued organophosphorus oligomer by TG-FTIR and DP-MS. J. Anal. Appl. Pyrol. 2011, 92(1), 164-170.  doi: 10.1016/j.jaap.2011.05.006

    40. [40]

      Zhang, W. C.; Li, X. M.; Li, L. M.; Yang, R. J. Study of the synergistic effect of silicon and phosphorus on the blowing-out effect of epoxy resin composites. Polym. Degrad. Stab. 2012, 97(6), 1041-1048.  doi: 10.1016/j.polymdegradstab.2012.03.008

    41. [41]

      Li, Z. Q.; Yang, R. J. Study of the synergistic effect of polyhedral oligomeric octadiphenylsulfonylsilsesquioxane and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide on flame-retarded epoxy resins. Polym. Degrad. Stab. 2014, 109, 233-239.  doi: 10.1016/j.polymdegradstab.2014.07.024

    42. [42]

      Wawrzyn, E.; Schartel, B.; Seefeldt, H.; Karrasch, A.; Jäger, C. What reacts with what in bisphenol A polycarbonate/silicon rubber/bisphenol A bis(diphenyl phosphate) during pyrolysis and fire behavior? Ind. Eng. Chem. Res. 2012, 51(3), 1244-1255.  doi: 10.1021/ie201908s

    43. [43]

      Schartel, B.; Balabanovich, A. I.; Braun, U.; Knoll, U.; Artner, J.; Ciesielski, M.; Döring, M.; Perez, R.; Sandler, J. K. W.; Altstädt, V.; Hoffmann, T.; Pospiech, D. Pyrolysis of epoxy resins and fire behavior of epoxy resin composites flame-retarded with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide additives. J. Appl. Polym. Sci. 2007, 104(4), 2260-2269.  doi: 10.1002/(ISSN)1097-4628

    44. [44]

      Tuinstra, F.; Koenig, J. L. Raman Spectrum of Graphite. J. Chem. Phys. 1970, 53(3), 1126-1130.  doi: 10.1063/1.1674108

    45. [45]

      Tuinstra, F.; Koenig, J. L. Characterization of Graphite Fiber Surfaces with Raman Spectroscopy. J. Compos. Mater. 1970, 4(4), 492-499.  doi: 10.1177/002199837000400405

  • 加载中
    1. [1]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    2. [2]

      Junchen PengXue YinDandan DongZhongyuan GuoQinqin WangMinmin LiuFei HeBin DaiChaofeng Huang . Promotion effect of epoxy group neighboring single-atom Cu site on acetylene hydrochlorination. Chinese Chemical Letters, 2024, 35(6): 109508-. doi: 10.1016/j.cclet.2024.109508

    3. [3]

      Yuanjiao LiuXiaoyang ZhaoSongyao ZhangYi WangYutuo ZhengXinrui MiaoWenli Deng . Site-selection and recognition of aromatic carboxylic acid in response to coronene and pyridine derivative. Chinese Chemical Letters, 2024, 35(8): 109404-. doi: 10.1016/j.cclet.2023.109404

    4. [4]

      An LuYuhao GuoYi YanLin ZhaiXiangyu WangWeiran CaoZijie LiZhixia ZhaoYujie ShiYuanjun ZhuXiaoyan LiuHuining HeZhiyu WangJian-Cheng Wang . Nanomedicine integrating the lipidic derivative of 5-fluorouracil, miriplatin and PD-L1 siRNA for enhancing tumor therapy. Chinese Chemical Letters, 2024, 35(6): 108928-. doi: 10.1016/j.cclet.2023.108928

    5. [5]

      Junying ZhangRuochen LiHaihua WangWenbing KangXing-Dong Xu . Photo-induced tunable luminescence from an aggregated amphiphilic ethylene-pyrene derivative in aqueous media. Chinese Chemical Letters, 2024, 35(6): 109216-. doi: 10.1016/j.cclet.2023.109216

    6. [6]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

Metrics
  • PDF Downloads(0)
  • Abstract views(741)
  • HTML views(14)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return