Citation: Wei Pan, Dong-Xiao Yin, Hai-Rong Jing, Hao-Jing Chang, Hao Wen, De-Hai Liang. Core-Corona Structure Formed by Hyaluronic Acid and Poly(L-lysine) via Kinetic Path[J]. Chinese Journal of Polymer Science, ;2019, 37(1): 36-42. doi: 10.1007/s10118-018-2166-z shu

Core-Corona Structure Formed by Hyaluronic Acid and Poly(L-lysine) via Kinetic Path

  • Corresponding author: De-Hai Liang, dliang@pku.edu.cn
  • Received Date: 2 May 2018
    Revised Date: 26 May 2018
    Accepted Date: 28 May 2018
    Available Online: 28 June 2018

  • The structure and kinetics of the complex formed by hyaluronic acid (HA) and poly(L-lysine) (PLL) were studied by time-resolved laser light scattering, TEM, and AFM. Because HA has a hydrophilic backbone, the complexes formed by HA and PLL are different from those formed by oppositely charged polyelectrolytes both having hydrophobic backbones. Instead of forming strong aggregates and even precipitates, the complex in the presence of excess HA is stable in the studied time period. More importantly, the complex spontaneously forms core-corona structure by the rearrangement of HA chains. The core is composed of complex rich of PLL and the corona is mainly HA. Further analysis shows that the hydrogen bond formed by HA creates a barrier hindering the further relaxation of HA chains. The automatic formation of core-corona structure by PLL/HA is helpful not only to understand the relaxation of polyelectrolyte in complex, but also to develop drug carriers with desirable properties.
  • 加载中
    1. [1]

      Izumrudov, V. A.; Galaev, I. Y.; Mattiasson, B. Polyelectrolyte- potential for bioseparation. Bioseparation 1998, 7(4-5), 207-220.  doi: 10.1023/A:1008007818765

    2. [2]

      Bolto, B.; Gregory, J. Organic polyelectrolytes in water treatment. Water Res. 2007, 41(11), 2301-2324.  doi: 10.1016/j.watres.2007.03.012

    3. [3]

      Savage, N.; Diallo, M. S. Nanomaterials and water purification: opportunities and challenges. J. Nanopart. Res. 2005, 7(4-5) 331-342.  doi: 10.1007/s11051-005-7523-5

    4. [4]

      Zhao, Q.; Zhang, P.; Antonietti, M.; Yuan, J. Poly(ionic liquid) complex with spontaneous micro-/mesoporosity: template-free synthesis and application as catalyst support. J. Am. Chem. Soc. 2012, 134(29), 11852-11855.  doi: 10.1021/ja303552p

    5. [5]

      Zheng, C.; Niu, L.; Yan, J. J.; Liu, J.; Luo, Y.; Liang, D. H. Structure and stability of the complex formed by oligonucleotides. Phys. Chem. Chem. Phys. 2012, 14(20), 7352-7359.  doi: 10.1039/c2cp24086f

    6. [6]

      Zhou, J. H.; Liu, J.; Shi, T.; Xia, Y. Q.; Luo, Y.; Liang, D. H. Phase separation of siRNA-polycation complex and its effect on transfection efficiency. Soft Matter 2013, 9(7), 2262-2268.  doi: 10.1039/c2sm27498a

    7. [7]

      Nomoto, T.; Fukushima, S.; Kumagai, M.; Machitani, K.; Arnida; Matsumoto, Y.; Oba, M.; Miyata, K.; Osada, K.; Nishiyama, N.; Kataoka, K. Three-layered polyplex micelle as a multifunctional nanocarrier platform for light-induced systemic gene transfer. Nat. Commun. 2014, 5, 3545.  doi: 10.1038/ncomms4545

    8. [8]

      Zheng, C.; Niu, L.; Pan, W.; Zhou, J. H.; Lv, H.; Cheng, J. J.; Liang, D. H. Long-term kinetics of DNA interacting with polycations. Polymer 2014, 55(10), 2464-2471.  doi: 10.1016/j.polymer.2014.03.038

    9. [9]

      Lee, Y.; Kataoka, K. Biosignal-sensitive polyion complex micelles for the delivery of biopharmaceuticals. Soft Matter 2009, 5(20), 3810-3817.  doi: 10.1039/b909934d

    10. [10]

      Oh, K. T.; Bronich, T. K.; Bromberg, L.; Hatton, T. A.; Kabanov, A. V. Block ionomer complexes as prospective nanocontainers for drug delivery. J. Control Release 2006, 115(1), 9-17.  doi: 10.1016/j.jconrel.2006.06.030

    11. [11]

      Mo, R.; Jiang, T.; DiSanto, R.; Tai, W.; Gu, Z. ATP-triggered anticancer drug delivery. Nat. Commun. 2014, 5, 3364.  doi: 10.1038/ncomms4364

    12. [12]

      Yue, Y.; Wu, C. Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomater. Sci. 2013, 1(2), 152-170.  doi: 10.1039/C2BM00030J

    13. [13]

      Aliabadi, H. M.; Landry, B.; Sun, C.; Tang, T.; Uludag, H. Supramolecular assemblies in functional siRNA delivery: where do we stand? Biomaterials 2012, 33(8), 2546-2569.  doi: 10.1016/j.biomaterials.2011.11.079

    14. [14]

      Zhou, J. H.; Wen, H.; Su, C. C.; Niu, L.; Liang, D. H. Complexation between DNA and peptides with precisely controlled charge density and distribution. Chinese J. Polym. Sci. 2014, 32(11), 1460-1468.  doi: 10.1007/s10118-014-1478-x

    15. [15]

      Niu, L.; Yan, J. J.; Yang, X. Y.; Burger, C.; Rong, L. X.; Hsiao, B.; Liang, D. H. Complexation of DNA with cationic surfactants as studied by small-angle X-ray scattering. Sci. China Chem. 2014, 57(12), 1738-1745.  doi: 10.1007/s11426-014-5159-y

    16. [16]

      Wen, H.; Yin, Y. D.; Huang, C.; Pan, W.; Liang, D. H. Encapsulation of RNA by negatively charged human serum albumin via physical interactions. Sci. China Chem. 2017, 60(1), 130-135.  doi: 10.1007/s11426-016-0094-8

    17. [17]

      Gummel, J.; Cousin, F.; Boue, F. Counterions release from electrostatic complexes of polyelectrolytes and proteins of opposite charge: a direct measurement. J. Am. Chem. Soc. 2007, 129(18), 5806-5807.  doi: 10.1021/ja070414t

    18. [18]

      Ha, B. Y.; Liu, A. J. Counterion-mediated attraction between two like-charged rods. Phys. Rev. Lett. 1997, 79(7), 1289-1292.  doi: 10.1103/PhysRevLett.79.1289

    19. [19]

      Ren, Y.; Jiang, X.; Pan, D.; Mao, H. Q. Charge density and molecular weight of polyphosphoramidate gene carrier are key parameters influencing its DNA compaction ability and transfection efficiency. Biomacromolecules 2010, 11(12), 3432-3439.  doi: 10.1021/bm1009574

    20. [20]

      Zelikin, A. N.; Izumrudov, V. Polyelectrolyte complexes formed by calf thymus DNA and aliphatic ionenes: Unexpected change in stability upon variation of chain length of ionenes of different charge density. Macromol. Biosci. 2002, 2(2), 78-81.  doi: 10.1002/(ISSN)1616-5195

    21. [21]

      Stoerkle, D.; Duschner, S.; Heimann, N.; Maskos, M.; Schmidt, M. Complex formation of DNA with oppositely charged polyelectrolytes of different chain topology: cylindrical brushes and, dendrimers. Macromolecules 2007, 40(22), 7998-8006.  doi: 10.1021/ma0711689

    22. [22]

      Izumrudov, V. A.; Wahlund, P. O.; Gustavsson, P. E.; Larsson, P. O.; Galaev, I. Y. Factors controlling phase separation in water-salt solutions of DNA and polycations. Langmuir 2003, 19(11), 4733-4739.  doi: 10.1021/la0206256

    23. [23]

      Michaels, A. S.; Miekka, R. G. Polycation-polyanion complexes – preparation and properties of poly-(vinylbenzyltrimethylammonium) poly-(styrenesulfonate). J. Phys. Chem. 1961, 65(10), 1765-1773.  doi: 10.1021/j100827a020

    24. [24]

      Michaels, A. S. Polyelectrolyte complexes. Ind. Eng. Chem. 1965, 57(10), 32-40.  doi: 10.1021/ie50670a007

    25. [25]

      Chen, J. H.; Heitmann, J. A.; Hubbe, M. A. Dependency of polyelectrolyte complex stoichiometry on the order of addition. 1. Effect of salt concentration during streaming current titrations with strong poly-acid and poly-base. Colloids Surf. A 2003, 223(1-3), 215-230.  doi: 10.1016/S0927-7757(03)00222-X

    26. [26]

      Chen, J. H.; Hubbe, M. A.; Heitmann, J. A.; Argyropoulos, D. S.; Rojas, O. J. Dependency of polyelectrolyte complex stoichiometry on the order of addition - 2. Aluminum chloride and poly-vinylsulfate. Colloids Surf. A 2004, 246(1-3), 71-79.  doi: 10.1016/j.colsurfa.2004.07.021

    27. [27]

      Zhang, R.; Shklovskii, B. T. Phase diagram of solution of oppositely charged polyelectrolytes. Physica A 2005, 352(1), 216-238.  doi: 10.1016/j.physa.2004.12.037

    28. [28]

      Dias, R. S.; Linse, P.; Pais, A. A. C. C. Stepwise disproportionation in polyelectrolyte complexes. J. Comput. Chem. 2011, 32(12), 2697-2707.  doi: 10.1002/jcc.v32.12

    29. [29]

      Kizilay, E.; Kayitmazer, A. B.; Dubin, P. L. Complexation and coacervation of polyelectrolytes with oppositely charged colloids. Adv. Colloid Interface Sci. 2011, 167(1-2), 24-37.  doi: 10.1016/j.cis.2011.06.006

    30. [30]

      Su, C. C.; Zhao, M. T.; Zhu, Z. C.; Zhou, J. H.; Wen, H.; Yin, Y. D.; Deng, Y.; Qiu, D.; Li, B. H.; Liang, D. H. Effect of peptide charge distribution on the structure and kinetics of DNA complex. Macromolecules 2015, 48(3), 756-763.  doi: 10.1021/ma501901b

    31. [31]

      Fujii, T.; Sun, Y. L.; An, K. N.; Luo, Z. P. Mechanical properties of single hyaluronan molecules. J. Biomech. 2002, 35(4), 527-531.  doi: 10.1016/S0021-9290(01)00205-6

    32. [32]

      Aruffo, A.; Stamenkovic, I.; Melnick, M.; Underhill, C. B.; Seed, B. CD44 is the principal cell-surface receptor for hyaluronate. Cell 1990, 61(7), 1303-1313.  doi: 10.1016/0092-8674(90)90694-A

    33. [33]

      Brandrup, J.; Immergut, E. H.; Grulke, E. A. in Polymer handbook. Wiley-Blackwell, New Jersey, 1999.

    34. [34]

      Zezin, A. B.; Kabanov, V. A. A new class of complex water-soluble polyelectrolytes. Russ. Chem. Rev. 1982, 51(9), 833-855.  doi: 10.1070/RC1982v051n09ABEH002921

    35. [35]

      Schärtl, W. in Light scattering from polymer solutions and nanoparticle dispersions. Springer-Verlag, Berlin, 2007.

    36. [36]

      Wu, C.; Zhou, S. Q. Laser-light scattering study of the phase-transition of poly(n-isopropylacrylamide) in water. 1. Single-chain. Macromolecules 1995, 28(24), 8381-8387.  doi: 10.1021/ma00128a056

    37. [37]

      Wang, X. H.; Qiu, X. P.; Wu, C. Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(N-isopropylacrylamide) homopolymer chain in water. Macromolecules 1998, 31(9), 2972-2976.  doi: 10.1021/ma971873p

    38. [38]

      Wen, H.; Pan, W.; Zhou, J. H.; Li, Z. C.; Liang, D. H. Complete dissociation and reassembly behavior as studied by using poly(ethylene glycol)-block-poly(glutamate sodium) and kanamycin A. Soft Matter 2015, 11(10), 1930-1936.  doi: 10.1039/C4SM02656J

    39. [39]

      Voets, I. K.; de Keizer, A.; Stuart, M. A. C. Complex coacervate core micelles. Adv. Colloid Interface Sci. 2009, 147-148, 300-318.  doi: 10.1016/j.cis.2008.09.012

    40. [40]

      Pergushov, D. V.; Mueller, A. H. E.; Schacher, F. H. Micellar interpolyelectrolyte complexes. Chem. Soc. Rev. 2012, 41(21), 6888-6901.  doi: 10.1039/c2cs35135h

  • 加载中
    1. [1]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    2. [2]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    3. [3]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    4. [4]

      Xiaoling WANGHongwu ZHANGDaofu LIU . Synthesis, structure, and magnetic property of a cobalt(Ⅱ) complex based on pyridyl-substituted imino nitroxide radical. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 407-412. doi: 10.11862/CJIC.20240214

    5. [5]

      Lulu DONGJie LIUHua YANGYupei FUHongli LIUXiaoli CHENHuali CUILin LIUJijiang WANG . Synthesis, crystal structure, and fluorescence properties of Cd-based complex with pcu topology. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 809-820. doi: 10.11862/CJIC.20240171

    6. [6]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    7. [7]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    8. [8]

      Qiangwei WangHuijiao LiuMengjie WangHaojie ZhangJianda XieXuanwei HuShiming ZhouWeitai Wu . Observation of high ionic conductivity of polyelectrolyte microgels in salt-free solutions. Chinese Chemical Letters, 2024, 35(4): 108743-. doi: 10.1016/j.cclet.2023.108743

    9. [9]

      Yulin MaoJingyu MaJiecheng JiYuliang WangWanhua WuCheng Yang . Crown aldoxime ethers: Their synthesis, structure, acid-catalyzed/photo-induced isomerization and adjustable guest binding. Chinese Chemical Letters, 2024, 35(11): 109927-. doi: 10.1016/j.cclet.2024.109927

    10. [10]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    11. [11]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    12. [12]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    13. [13]

      Luyan ShiKe ZhuYuting YangQinrui LiangQimin PengShuqing ZhouTayirjan Taylor IsimjanXiulin Yang . Phytic acid-derivative Co2B-CoPOx coralloidal structure with delicate boron vacancy for enhanced hydrogen generation from sodium borohydride. Chinese Chemical Letters, 2024, 35(4): 109222-. doi: 10.1016/j.cclet.2023.109222

    14. [14]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    15. [15]

      Xueqi ZhangHan GaoJianan XuMin Zhou . Polyelectrolyte-functionalized carbon nanocones enable rapid and accurate analysis of Ag nanoparticle colloids. Chinese Chemical Letters, 2025, 36(4): 110148-. doi: 10.1016/j.cclet.2024.110148

    16. [16]

      Haitao YinLiang MengLi LiJiamu XiaoLongrui LiangNannan HuangYansong ShiAngang ZhaoJingwen Hou . Polydopamine-modified biochar supported polylactic acid and zero-valent iron affects the functional microbial community structure for 1,1,1-trichloroethane removal in simulated groundwater. Chinese Chemical Letters, 2025, 36(1): 110313-. doi: 10.1016/j.cclet.2024.110313

    17. [17]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    18. [18]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

    19. [19]

      Ce LiangQiuhui SunAdel Al-SalihyMengxin ChenPing Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306

    20. [20]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

Metrics
  • PDF Downloads(0)
  • Abstract views(878)
  • HTML views(40)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return