Citation: Jia-Long Ban, Su-Qing Li, Chen-Feng Yi, Jing-Bo Zhao, Zhi-Yuan Zhang, Jun-Ying Zhang. Amorphous and Crystallizable Thermoplastic Polyureas Synthesized through a One-pot Non-isocyanate Route[J]. Chinese Journal of Polymer Science, ;2019, 37(1): 43-51. doi: 10.1007/s10118-018-2165-0 shu

Amorphous and Crystallizable Thermoplastic Polyureas Synthesized through a One-pot Non-isocyanate Route

  • Corresponding author: Jing-Bo Zhao, zhaojb@mail.buct.edu.cn
  • Received Date: 27 April 2018
    Revised Date: 23 May 2018
    Accepted Date: 28 May 2018
    Available Online: 4 July 2018

  • A simple one-pot non-isocyanate route for synthesizing thermoplastic polyureas is presented. In situ urethanization was conducted from the ring-opening reaction of ethylene carbonate with poly(propylene glycol) bis(2-aminopropyl ether) and hexanediamine, m-xylylenediamine, or diethylene glycol bis(3-aminopropyl) ether at 100 °C for 6 h under normal pressure. Melt transurethane polycondensation was successively conducted at 170 °C under a reduced pressure of 399 Pa for different time periods. A series of non-isocyanate thermoplastic polyureas (NI-TPUreas) were prepared. The NI-TPUreas were characterized by gel permeation chromatography, FTIR, 1H-NMR, differential scanning calorimetry, thermogravimetric analysis, wide-angle X-ray diffraction, atomic force microscopy, and tensile test. NI-TPUreas exhibited Mn of up to 1.67 × 104 g/mol, initial decomposition temperature over 290 °C, and tensile strength of up to 32 MPa. Several crystallizable NI-TPUreas exhibited Tm exceeding 98 °C. NI-TPUreas with good thermal and mechanical properties were prepared through a green and simple one-pot non-isocyanate route.
  • 加载中
    1. [1]

      Delebecq, E.; Pascault, J. P.; Boutevin, B.; Ganachaud F. On the versatility of urethane/urea bonds: reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev. 2013, 113, 80-118.  doi: 10.1021/cr300195n

    2. [2]

      Ma, Z. W.; Hong, Y.; Nelson, D. M.; Pichamuthu, J. E.; Leeson, C. E.; Wagner, W. R. Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromolecules 2011, 12, 3265-3274.  doi: 10.1021/bm2007218

    3. [3]

      Ruan, C. S.; Hu, N.; Hu, Y.; Jiang, L. X.; Cai, Q. Q.; Wang, H. Y.; Pan, H. B.; Lu, W. W.; Wang, Y. L. Piperazine-based polyurethane-ureas with controllable degradation as potential bone scaffolds. Polymer 2014, 55, 1020-1027.  doi: 10.1016/j.polymer.2014.01.011

    4. [4]

      Kim, E. Y.; Lee, J. H.; Lee, D. J.; Lee, Y. H.; Lee, J. H.; Kim, H. D. Synthesis and properties of highly hydrophilic waterborne polyurethane-ureas containing various hardener content for waterproof breathable fabrics. J. Appl. Polym. Sci. 2013, 129, 1745-1751.  doi: 10.1002/app.v129.4

    5. [5]

      Oprea, S.; Gradinariu, P.; Joga, A.; Oprea, V. Synthesis, structure and fungal resistance of sulfadiazine-based polyurethane ureas. Polym. Degrad. Stab. 2013, 98, 1481-1488.  doi: 10.1016/j.polymdegradstab.2013.04.017

    6. [6]

      Tang, D. L.; Noordover, B. A. J.; Sablong, R. J.; Koning, C. E. Thermoplastic poly(urethane urea)s from novel, bio-based amorphous polyester diols. Macromol. Chem. Phys. 2012, 213, 2541-2549.  doi: 10.1002/macp.v213.23

    7. [7]

      Shirasaka, H.; Inoue, S. I.; Asai, K.; Okamoto, H. Polyurethane urea elastomer having monodisperse poly(oxytetramethylene) as a soft segment with a uniform hard segment. Macromolecules 2000, 33, 2776-2778.  doi: 10.1021/ma9917904

    8. [8]

      Primeaux II, D. J. Polyurea elastomer technology: History, chemistry & basic formulating techniques. Primeaux Associates LLC, hansonco.net 2004, 1-20.

    9. [9]

      Mattia, J.; Painter, P. A comparison of hydrogen bonding and order in a polyurethane and poly(urethane-urea) and their blends with poly(ethylene glycol). Macromolecules 2007, 40, 1546-1554.  doi: 10.1021/ma0626362

    10. [10]

      Johnson, J. C.; Wanasekara, N. D.; Korley, L. T. J. Utilizing peptidic ordering in the design of hierarchical polyurethane/ureas. Biomacromolecules 2012, 13, 1279-1286.  doi: 10.1021/bm201800v

    11. [11]

      Underhill, R. S.; DiLoreto, S.; DiLoreto, B. Development of polyureas with improved fire resistance. J. Fire Sci. 2012, 31, 211-226.

    12. [12]

      Kathalewar, M. S.; Joshi, P. B.; Sabnis, A. S.; Malshe, V. C. Non-isocyanate polyurethanes: From chemistry to applications. RSC Adv. 2013, 3, 4110-4129.  doi: 10.1039/c2ra21938g

    13. [13]

      Tamami, B.; Sohn, S.; Wilkes, G. L. Incorporation of carbon dioxide into soybean oil and subsequent preparation and studies of nonisocyanate polyurethane networks. J. Appl. Polym. Sci. 2004, 92, 883-891.  doi: 10.1002/(ISSN)1097-4628

    14. [14]

      Annunziata, L.; Diallo, A. K.; Fouquay, S.; Michaud, G.; Simon, F.; Brusson, J. M.; Carpentier, J. F.; Guillaume, S. M. α,ω-Di(glycerol carbonate) telechelic polyesters and polyolefins as precursors to polyhydroxyurethanes: an isocyanate-free approach. Green Chem. 2014, 16, 1947-1956.  doi: 10.1039/C3GC41821A

    15. [15]

      Bähr, M.; Bitto, A.; Mülhaupt, R. Cyclic limonene dicarbonate as a new monomer for non-isocyanate oligo- and polyurethanes (NIPU) based upon terpenes. Green Chem. 2012, 14, 1447-1454.  doi: 10.1039/c2gc35099h

    16. [16]

      Besse, V.; Auvergne, R.; Carlotti, S.; Boutevin, G.; Otazaghine, B.; Caillol, S.; Pascault, J. P.; Boutevin, B. Synthesis of isosorbide based polyurethanes: an isocyanate free method. React. Funct. Polym. 2013, 73, 588-594.  doi: 10.1016/j.reactfunctpolym.2013.01.002

    17. [17]

      Maisonneuve, L.; Lamarzelle, O.; Rix, E.; Grau, E.; Cramail, H. Isocyanate-free routes to polyurethanes and poly(hydroxy urethane)s. Chem. Rev. 2015, 115, 12407-12439.  doi: 10.1021/acs.chemrev.5b00355

    18. [18]

      Deepa, P.; Jayakannan, M. Solvent-free and nonisocyanate melt transurethane reaction for aliphatic polyurethanes and mechanistic aspects. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2445-2458.  doi: 10.1002/pola.v46:7

    19. [19]

      Rokicki, G.; Piotrowska, A. A new route to polyurethanes from ethylene carbonate, diamines and diols. Polymer 2002, 43, 2927-2935.  doi: 10.1016/S0032-3861(02)00071-X

    20. [20]

      Ochiai, B.; Utsuno, T. Non-isocyanate synthesis and application of telechelic polyurethanes via polycondensation of diurethanes obtained from ethylene carbonate and diamines. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 525-533.  doi: 10.1002/pola.26418

    21. [21]

      Sharma, B.; Ubaghs, L.; Keul, H.; Höcker, H.; Loontjens, T.; van Benthem, R. Synthesis and characterization of alternating poly(amide urethane)s from ε-caprolactone, diamines and diphenyl carbonate. Polymer 2005, 46, 1775-1783.  doi: 10.1016/j.polymer.2004.11.024

    22. [22]

      Li, C. G.; Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Synthesis and characterization of aliphatic poly(amide urethane)s having different nylon 6 segments through non-isocyanate route. J. Polym. Res. 2014, 21, 498, 1-10.

    23. [23]

      Tang, D. L.; Mulder, D.; Noordover, B. A. J.; Koning, C. E. Well-defined biobased segmented polyureas synthesis via a TBD-catalyzed isocyanate-free route. Macromol. Rapid Commun. 2011, 32, 1379-1385.  doi: 10.1002/marc.201100223

    24. [24]

      Li, S. Q.; Sang, Z. H.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Crystallizable and tough aliphatic thermoplastic polyureas synthesized through a non-isocyanate route. Ind. Eng. Chem. Res. 2016, 55, 1902-1911.  doi: 10.1021/acs.iecr.5b04083

    25. [25]

      Pan, W. C.; Lin, C. H.; Dai, S. A. High performance segmented polyurea by trans-esterification of diphenyl carbonates with aliphatic diamines. J. Polym. Sci., Part A: Polym. Chem. 2014, 52, 2781-2790.  doi: 10.1002/pola.v52.19

    26. [26]

      Pan, W. C.; Liao, K.; Lin, C. H.; Dai, S. A. Solvent-free processes to polyurea elastomers from diamines and diphenyl carbonate. J. Polym. Res. 2015, 22, 114, 1-11.  doi: 10.1007/s10965-015-0747-x

    27. [27]

      Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Aliphatic thermoplastic polyurethane-ureas and polyureas synthesized through a non-isocyanate route. RSC Adv. 2015, 5, 6843-6852.  doi: 10.1039/C4RA12195C

    28. [28]

      Deng, Y.; Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Crystallizable and tough aliphatic thermoplastic poly(ether urethane)s synthesized through a non-isocyanate route. RSC Adv. 2014, 4, 43406-43414.  doi: 10.1039/C4RA05880A

    29. [29]

      Allcock, H. R.; Lampe F. W.; Mark, J. E. in Contemporary Polymer Chemistry, 3rd ed. Science Press, Beijing, 2003, Chapter 19, p. 600.

    30. [30]

      Liu, S. W.; Zhang, Y.; Xu, J. R. Synthesis and characterization of polyureas from aniline trimer with TDI, MDI and HDI as pH sensitive materials. Chin. J. Chem. 2011, 29, 1036-1040.  doi: 10.1002/cjoc.201190176

    31. [31]

      Yin T., Sun H. Y., Zhao J. B., Jiang S. L., Yang W. T., Synthesis and characterization of aliphatic polyesteramides mainly composed of alternating diester diamide units from N,N′-bis(2-hydroxyethyl)-oxamide and diacids. Polym. Eng. Sci. 2014, 54, 756-765.  doi: 10.1002/pen.v54.4

    32. [32]

      Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Synthesis and characterization of aliphatic segmented poly(ether amide urethane)s through a non-isocyanate route. RSC Adv. 2014, 4, 23720-23729.  doi: 10.1039/c4ra02325k

    33. [33]

      Deng, Y.; Li, S. Q.; Zhao, J. B.; Zhang, Z. Y.; Zhang, J. Y.; Yang, W. T. Aliphatic thermoplastic poly(ether urethane)s having long PEG sequences synthesized through a non-isocyanate route. Chinese J. Polym. Sci. 2015, 33, 880-889.  doi: 10.1007/s10118-015-1638-7

    34. [34]

      Klinedinsta, D. B.; Yilgör, E.; Yilgör, I.; Beyerc, F. L.; Wilkes, G. L. Structure-property behavior of segmented polyurethaneurea copolymers based on an ethylene-butylene soft segment. Polymer 2005, 46, 10191-10201.  doi: 10.1016/j.polymer.2005.07.065

    35. [35]

      Zhang, X. L.; Xiao, J. J.; Zhou, H. J.; Chen, X. Q.; Li, Y. T.; Qu, X. W. Synthesis and characterization of damping polyurethane derived from poly(neopentyl glycol propoxylated succinic acid). J. Polym. Res. 2015, 22, 108, 1-8.  doi: 10.1007/s10965-015-0734-2

  • 加载中
    1. [1]

      Yu PangMin WangNing-Hua YangMin XueYong Yang . One-pot synthesis of a giant twisted double-layer chiral macrocycle via [4 + 8] imine condensation and its X-ray structure. Chinese Chemical Letters, 2024, 35(10): 109575-. doi: 10.1016/j.cclet.2024.109575

    2. [2]

      Uttam Pandurang Patil . Porous carbon catalysis in sustainable synthesis of functional heterocycles: An overview. Chinese Chemical Letters, 2024, 35(8): 109472-. doi: 10.1016/j.cclet.2023.109472

    3. [3]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    4. [4]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    5. [5]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    6. [6]

      Xiao XiaoBiao ChenJia-Wei LiJun-Bo ZhengXu WangHang ZhaoFen-Er Chen . Nitrite-catalyzed economic and sustainable bromocyclization of tryptamines/tryptophols to access hexahydropyrrolo[2,3-b]indoles/tetrahydrofuroindolines in batch and flow. Chinese Chemical Letters, 2024, 35(7): 109280-. doi: 10.1016/j.cclet.2023.109280

    7. [7]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    8. [8]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    9. [9]

      Zhaojun Liu Zerui Mu Chuanbo Gao . Alloy nanocrystals: Synthesis paradigms and implications. Chinese Journal of Structural Chemistry, 2023, 42(11): 100156-100156. doi: 10.1016/j.cjsc.2023.100156

    10. [10]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    11. [11]

      Hui JinQin CaiPeiwen LiuYan ChenDerong WangWeiping ZhuYufang XuXuhong Qian . Multistep continuous flow synthesis of Erlotinib. Chinese Chemical Letters, 2024, 35(4): 108721-. doi: 10.1016/j.cclet.2023.108721

    12. [12]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    13. [13]

      Caihong MaoYanfeng HeXiaohan WangYan CaiXiaobo Hu . Synthesis and molecular recognition characteristics of a tetrapodal benzene cage. Chinese Chemical Letters, 2024, 35(8): 109362-. doi: 10.1016/j.cclet.2023.109362

    14. [14]

      Mei PengWei-Min He . Photochemical synthesis and group transfer reactions of azoxy compounds. Chinese Chemical Letters, 2024, 35(8): 109899-. doi: 10.1016/j.cclet.2024.109899

    15. [15]

      Qiuyun LiYannan ZhuYining WangGang QiWen-Juan HaoKelu YanBo Jiang . Catalytic CH activation-initiated transdiannulation: An oxygen transfer route to ring-fluorinated tricyclic γ-lactones. Chinese Chemical Letters, 2024, 35(9): 109494-. doi: 10.1016/j.cclet.2024.109494

    16. [16]

      Erzhuo ChengYunyi LiWei YuanWei GongYanjun CaiYuan GuYong JiangYu ChenJingxi ZhangGuangquan MoBin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386

    17. [17]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    18. [18]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    19. [19]

      Shengkai LiYuqin ZouChen ChenShuangyin WangZhao-Qing Liu . Defect engineered electrocatalysts for C–N coupling reactions toward urea synthesis. Chinese Chemical Letters, 2024, 35(8): 109147-. doi: 10.1016/j.cclet.2023.109147

    20. [20]

      Peng ChenLijuan LiangYufei ZhuZhimin XingZhenhua JiaTeck-Peng Loh . Strategies for constructing seven-membered rings: Applications in natural product synthesis. Chinese Chemical Letters, 2024, 35(6): 109229-. doi: 10.1016/j.cclet.2023.109229

Metrics
  • PDF Downloads(0)
  • Abstract views(694)
  • HTML views(28)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return