Citation: Miao Zheng, Tang-Jie Long, Xiao-Ling Chen, Jun-Qi Sun. Humidity-responsive Bilayer Actuators Comprised of Porous and Nonporous Poly(acrylic acid)/Poly(allylamine hydrochloride) Films[J]. Chinese Journal of Polymer Science, ;2019, 37(1): 52-58. doi: 10.1007/s10118-018-2162-3 shu

Humidity-responsive Bilayer Actuators Comprised of Porous and Nonporous Poly(acrylic acid)/Poly(allylamine hydrochloride) Films

  • Corresponding author: Jun-Qi Sun, sun_junqi@jlu.edu.cn
  • †These authors contributed equally to this work
  • Received Date: 22 April 2018
    Revised Date: 14 May 2018
    Accepted Date: 22 May 2018
    Available Online: 21 June 2018

  • Bilayer humidity-responsive actuators are generally composed of actuating and supporting layers of different materials with largely different wettability. Such kinds of bilayer actuators suffer from low adhesive force between the two layers during usage. This study demonstrates the preparation of humidity-responsive bilayer actuators that have the same materials in the actuating and supporting layers to avoid the adhesive issue. The bilayer actuators consist of a porous poly(acrylic acid) (PAA)/poly(allylamine hydrochloride) (PAH) layer and a nonporous PAA/PAH layer that are fabricated by exponentially layer-by-layer assembly method. At a high/low relative humidity (RH), the nonporous PAA/PAH layer can efficiently expand/shrink by absorbing/desorbing water while the volume expansion/shrinkage of the porous PAA/PAH layer in an environment with changed humidity is significantly suppressed by the micrometer-sized pores. The largely different expansion/shrinkage of the nonporous and porous PAA/PAH layers when subjected to humidity changes enables rapid and reversible rolling/unrolling motions of the bilayer actuator. The bilayer actuator shows a faster rolling speed and a larger bending curvature when subjected to a larger humidity increase.
  • 加载中
    1. [1]

      Zhao, Z. G.; Xu, Y. C.; Fang, R. C.; Liu, M. J. Bioinspired adaptive gel materials with synergistic heterostructures. Chinese J. Polym. Sci. 2018, 26(6), 683-696.

    2. [2]

      Uh, K.; Yoon, B.; Lee, C. W.; Kim, J. M. An electrolyte-free conducting polymer actuator that displays electrothermal bending and flapping wing motions under a magnetic field. ACS Appl. Mater. Interfaces 2016, 8(2), 1289-1296.  doi: 10.1021/acsami.5b09981

    3. [3]

      Chen, N.; Hu, Y.; Zhao, Y.; Qu, L. Progress in controllable preparation and electrochemical applications of graphene/poly(pyrrole) composites. Acta Polymerica Sinica (in Chinese) 2014, 21(6), 752-760.

    4. [4]

      Zhang, L.; Naumov, P. Light- and humidity-induced motion of an acidochromic film. Angew. Chem. Int. Ed. 2015, 54(30), 8642-8647.  doi: 10.1002/anie.201504153

    5. [5]

      Sattar, R.; Kausar, A.; Siddiq, M. Thermal, mechanical and electrical studies of novel shape memory polyurethane/polyaniline blends. Chinese J. Polym. Sci. 2015, 33(9), 1313-1324.  doi: 10.1007/s10118-015-1680-5

    6. [6]

      Liao, J. X.; Huang, J. H.; Wang, T.; Sun, W. W.; Tong, Z. Rapid shape memory and pH-modulated spontaneous actuation of dopamine containing hydrogels. Chinese J. Polym. Sci. 2017, 35(10), 1297-1306.  doi: 10.1007/s10118-017-1991-9

    7. [7]

      Ma, M.; Guo, L.; Anderson, D. G.; Langer, R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science 2013, 339(6116), 186-189.  doi: 10.1126/science.1230262

    8. [8]

      Liu, J. C.; Shang, Y. Y.; Zhang, D. J.; Xie, Z.; Hu, R. X.; Wang, J. X. Single-material solvent-sensitive fluorescent actuator from carbon dots inverse opals based on gradient dewetting. Chinese J. Polym. Sci. 2017, 35(9), 1043-1050.  doi: 10.1007/s10118-017-1981-y

    9. [9]

      Islam, M. R.; Li, X.; Smyth, K.; Serpe, M. J. Polymer-based muscle expansion and contraction. Angew. Chem. Int. Ed. 2013, 52(39), 10330-10333.  doi: 10.1002/anie.201303475

    10. [10]

      Chen, X.; Goodnight, D.; Gao, Z.; Cavusoglu, A. H.; Sabharwal, N.; DeLay, M.; Driks, A.; Sahin, O. Scaling up nanoscale water-driven energy conversion into evaporation-driven engines and generators. Nat. Commun. 2015, 6, 7346-7352  doi: 10.1038/ncomms8346

    11. [11]

      Keplinger, C.; Sun, J. Y.; Foo, C. C.; Rothemund, P.; Whitesides, G. M.; Suo, Z. Stretchable, transparent, ionic conductors. Science 2013, 341(6149), 984-987.  doi: 10.1126/science.1240228

    12. [12]

      Zhu, C. H.; Lu, Y.; Peng, J.; Chen, J. F.; Yu, S. H. Photothermally sensitive poly(n-isopropylacrylamide)/graphene oxide nanocomposite hydrogels as remote light-controlled liquid microvalves. Adv. Funct. Mater. 2012, 22(19), 4017-4022.  doi: 10.1002/adfm.v22.19

    13. [13]

      Feinberg, A. W.; Feigel, A.; Shevkoplyas, S. S.; Sheehy, S.; Whitesides, G. M.; Parker, K. K. Muscular thin films for building actuators and powering devices. Science 2007, 317(5843), 1366-1370.  doi: 10.1126/science.1146885

    14. [14]

      Cheng, H.; Liu, J.; Zhao, Y.; Hu, C.; Zhang, Z.; Chen, N.; Jiang, L.; Qu, L. Graphene fibers with predetermined deformation as moisture-triggered actuators and robots. Angew. Chem. Int. Ed. 2013, 52(40), 10482-10486.  doi: 10.1002/anie.201304358

    15. [15]

      Lee, S. W.; Prosser, J. H.; Purohit, P. K.; Lee, D. Bioinspired hygromorphic actuator exhibiting controlled locomotion. ACS Macro Lett. 2013, 2(11), 960-965.  doi: 10.1021/mz400439a

    16. [16]

      Yamada, M.; Kondo, M.; Mamiya, J.; Yu, Y.; Kinoshita, M.; Barrett, C. J.; Ikeda, T. Photomobile polymer materials: towards light-driven plastic motors. Angew. Chem. Int. Ed. 2008, 47(27), 4986-4988.  doi: 10.1002/anie.v47:27

    17. [17]

      Mu, J.; Hou, C.; Zhu, B.; Wang, H.; Li, Y.; Zhang, Q. A multi-responsive water-driven actuator with instant and powerful performance for versatile applications. Sci. Rep. 2015, 5, 9503-9509.  doi: 10.1038/srep09503

    18. [18]

      Li, M. H.; Keller, P.; Li, B.; Wang, X.; Brunet, M. Light-driven side-on nematic elastomer actuators. Adv. Mater. 2003, 15(7-8), 569-572.

    19. [19]

      Yu, Y.; Maeda, T.; Mamiya, J.; Ikeda, T. Photomechanical effects of ferroelectric liquid-crystalline elastomers containing azobenzene chromophores. Angew. Chem. Int. Ed. 2007, 46(6), 881-883.  doi: 10.1002/(ISSN)1521-3773

    20. [20]

      Camacho-Lopez, M.; Finkelmann, H.; Palffy-Muhoray, P.; Shelley, M. Fast liquid-crystal elastomer swims into the dark. Nat. Mater. 2004, 3(5), 307-310.  doi: 10.1038/nmat1118

    21. [21]

      Ma, Y.; Zhang, Y.; Wu, B.; Sun, W.; Li, Z.; Sun, J. Polyelectrolyte multilayer films for building energetic walking devices. Angew. Chem. Int. Ed. 2011, 50(28), 6254-6257.  doi: 10.1002/anie.201101054

    22. [22]

      Ma, Y.; Sun, J. Humido- and thermo-responsive free-standing films mimicking the petals of the morning glory flower. Chem. Mater. 2009, 21(5), 898-902.  doi: 10.1021/cm8031708

    23. [23]

      Chen, X.; Sun, J. Fabrication of macroporous films with closed honeycomb-like pores from exponentially growing layer-by-layer assembled polyelectrolyte multilayers. Chem. Asian J. 2014, 9(8), 2063-2067.  doi: 10.1002/asia.v9.8

  • 加载中
    1. [1]

      Xinxiu YanXizhe HuangYangyang LiuWeishang JiaHualin ChenQi YaoTao Chen . Hyperbranched polyamidoamine protective layer with phosphate and carboxyl groups for dendrite-free Zn metal anodes. Chinese Chemical Letters, 2024, 35(10): 109426-. doi: 10.1016/j.cclet.2023.109426

    2. [2]

      Zeyu JiangYadi WangChangwei ChenChi He . Progress and challenge of functional single-atom catalysts for the catalytic oxidation of volatile organic compounds. Chinese Chemical Letters, 2024, 35(9): 109400-. doi: 10.1016/j.cclet.2023.109400

    3. [3]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    4. [4]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    5. [5]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    6. [6]

      Wenhao YanShuaiya XueXuerui ZhaoWei ZhangJian Li . Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy. Chinese Chemical Letters, 2024, 35(4): 109224-. doi: 10.1016/j.cclet.2023.109224

    7. [7]

      Yujuan Zhao Zaiwang Zhao . Monolayer mesoporous nanosheets with surface asymmetry via a dual-emulsion-directed monomicelle assembly. Chinese Journal of Structural Chemistry, 2024, 43(2): 100238-100238. doi: 10.1016/j.cjsc.2024.100238

    8. [8]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    9. [9]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    10. [10]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    11. [11]

      Peiwen LiuFang ZhaoJing ZhangYunpeng BaiJinxing YeBo BaoXinggui ZhouLi ZhangChanglu ZhouXinhai YuPeng ZuoJianye XiaLian CenYangyang YangGuoyue ShiLin XuWeiping ZhuYufang XuXuhong Qian . Micro/nano flow chemistry by Beyond Limits Manufacturing. Chinese Chemical Letters, 2024, 35(5): 109020-. doi: 10.1016/j.cclet.2023.109020

    12. [12]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    13. [13]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    14. [14]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    15. [15]

      Shuo ZhangHaitao LiaoZhi-Qun LiuChong YanJia-Qi Huang . Re-evaluating the nano-sized inorganic protective layer on Cu current collector for anode free lithium metal batteries. Chinese Chemical Letters, 2024, 35(7): 109284-. doi: 10.1016/j.cclet.2023.109284

    16. [16]

      Yingxiao ZongYangfei WeiXiaoqing LiuJunke WangHuanfang GuoJunli WangZhuangzhi ShiTao TuCheng YangChongyang WangLeyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743

    17. [17]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    18. [18]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    19. [19]

      Fei Jin Bolin Yang Xuanpu Wang Teng Li Noritatsu Tsubaki Zhiliang Jin . Facilitating efficient photocatalytic hydrogen evolution via enhanced carrier migration at MOF-on-MOF S-scheme heterojunction interfaces through a graphdiyne (CnH2n-2) electron transport layer. Chinese Journal of Structural Chemistry, 2023, 42(12): 100198-100198. doi: 10.1016/j.cjsc.2023.100198

    20. [20]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

Metrics
  • PDF Downloads(0)
  • Abstract views(661)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return