Citation: Joshua Avossa, Francesco Branda, Francesco Marulo, Giuseppe Petrone, Stefano Guido, Giovanna Tomaiuolo, Aniello Costantini. Light Electrospun Polyvinylpyrrolidone Blanket for Low Frequencies Sound Absorption[J]. Chinese Journal of Polymer Science, ;2018, 36(12): 1368-1374. doi: 10.1007/s10118-018-2154-3 shu

Light Electrospun Polyvinylpyrrolidone Blanket for Low Frequencies Sound Absorption

  • Corresponding author: Francesco Branda, branda@unina.it
  • Received Date: 16 March 2018
    Revised Date: 5 May 2018
    Accepted Date: 8 May 2018
    Available Online: 11 July 2018

  • Light polymeric soundproofing materials (density = 63 kg/m3) of interest for the transportation industry were fabricated through electrospinning. Blankets of electrospun polyvinylpyrrolidone (average fiber diameter = (1.6 ± 0.5) or (2.8 ± 0.5) µm) were obtained by stacking disks of electrospun mats. The sound absorption coefficients were measured using the impedance tube instrument based on ASTM E1050 and ISO 10534-2. For a given set of disks (from a minimum of 6) the sound absorption coefficient changed with the frequency (in the range 200–1600 Hz) following a bell shape curve with a maximum (where the coefficient is greater than 0.9) that shifts to lower frequencies at higher piled disks number and greater fiber diameter. This work showed that electrospinning produced sound absorbers with reduced thickness (2–3 cm) and excellent sound-absorption properties in the low and medium frequency range.
  • 加载中
    1. [1]

      Barber, A. "Handbook of noise and vibration control", Elsevier, Oxford, 1992

    2. [2]

      Crocker, M. J. "Handbook of noise and vibration control", John Wiley and Sons, New York, 2007

    3. [3]

      Khan, W. S.; Asmalutu, R.; Yildirim, M. B. Acoustical properties of electrospun fibers for aircraft interior noise reduction. J. Aerosp. Eng. 2012, 25, 376−382  doi: 10.1061/(ASCE)AS.1943-5525.0000118

    4. [4]

      Ingard, U. Notes on sound absorption technology. 1994

    5. [5]

      Goines, L.; Hagler, L. Noise Pollution: A Modern Plague. South. Med. J. 2007, 100, 287−294  doi: 10.1097/SMJ.0b013e3180318be5

    6. [6]

      Mahashabde, A.; Wolfe, P.; Ashok, A.; Dorbia, C.; He, Q.; Fan, A.; Lukachko, S.; Mozdzanowska, A.; Wollersheim, C.; Barrett, S. R. H.; Locke, M.; Waits, I. A. Assessing the environmental impacts of aircraft noise and emissions. Prog. Aerosp. Sci. 2011, 47, 15−52  doi: 10.1016/j.paerosci.2010.04.003

    7. [7]

      Zhao, D.; Li, X. Y. A review of acoustic dampers applied to combustion chambers in aerospace industry. Prog. Aerosp. Sci. 2015, 74, 114−30  doi: 10.1016/j.paerosci.2014.12.003

    8. [8]

      Harris, C. M., "Handbook of Acoustical Measurements and Noise Control", Mcgraw-Hill, 1997

    9. [9]

      Arenas, J. P.; Crocker, M. J. Recent trends in porous sound-absorbing materials. J. Sound Vib. 2010, 12−17

    10. [10]

      Liu, H.; Wang, D.; Zhao, N.; Ma, J.; Gong, J.; Yang, S.; Xu, J. Application of electrospinning fibres on sound absorption in low and medium frequency range. Mater. Res. Innov. 2014, 18, 888−891

    11. [11]

      Huang, Z. M.; Zhang, Y. Z.; Kotaki, M.; Ramakrishna, S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 2003, 63, 2223−2253  doi: 10.1016/S0266-3538(03)00178-7

    12. [12]

      Teo, W. E.; Ramakrishna, S. A review on electrospinning design and nanofibre assemblies. Nanotechnology 2006, 17, 89−106  doi: 10.1088/0957-4484/17/1/015

    13. [13]

      Rutledge, G. C.; Fridrikh, S. V. Formation of fibers by electrospinning. Adv. Drug Deliv. Rev. 2007, 59, 1384−1391  doi: 10.1016/j.addr.2007.04.020

    14. [14]

      Bhardwaj, N.; Kundu, S. C. Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 2010, 28, 325−347  doi: 10.1016/j.biotechadv.2010.01.004

    15. [15]

      Lanotte, L.; Bilotti, C.; Sabetta, L.; Tomaiuolo, G.; Guido, S. Dispersion of sepiolite rods in nano fibers by electrospinning. Polymer 2013, 54(4), 1295−1297  doi: 10.1016/j.polymer.2013.01.009

    16. [16]

      Agarwal, S.; Greiner, A.; Wendorff, J. H. Functional materials by electrospinning of polymers. Prog. Polym. Sci. 2013, 38, 963−991  doi: 10.1016/j.progpolymsci.2013.02.001

    17. [17]

      Xiang, H.; Tan, S.; Yu, X.; Long, Y.; Zhang, X.; Zhao, N.; Xu, J. Sound absorption behavior of electrospun polyacrylonitrile nanofibrous membranes. Chinese J. Polym. Sci. 2011, 29(6), 650−657  doi: 10.1007/s10118-011-1079-x

    18. [18]

      Trematerra, A.; Iannace, G.; Nesti, S.; Fatarella, E.; Peruzzi, F. Acoustic properties of nanofibers. Noise & Vibration Worldwide 2014, 45, 29−33  doi: 10.1260/0957-4565.45.10.29

    19. [19]

      Iannace, G. Sound absorption of materials obtained from the shredding of worn tyres. Building acoustics 2014, 21(4), 277−286  doi: 10.1260/1351-010X.21.4.277

    20. [20]

      Chung, J. Y.; Blaser, D. A. Transfer function method of measuring in-duct acoustic properties. I. Theory. J. Acoust. Soc. Am. 1980, 68, 907−13  doi: 10.1121/1.384778

    21. [21]

      Koruk, H. An assessment of the performance of impedance tube method. Noise Contr. Eng. J. 2014, 62, 264−274  doi: 10.3397/1/376226

    22. [22]

      Shenoy, S. L.; Bates, W. D.; Frisch, H. L.; Wrek, G. E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit. Polymer 2005, 46, 3372−3384  doi: 10.1016/j.polymer.2005.03.011

    23. [23]

      Tarnow, V. Measured anisotropic air flow resistivity and sound attenuation of glass wool. J. Acoust. Soc. Am. 2002, 111(6), 2735−2739  doi: 10.1121/1.1476686

    24. [24]

      Stani, M. M.; Muellner, H.; Plotizin, I. Sound insulation of plasterboard walls and air flow resistivity: an empirical examination with respect to practical applications. Proceedings of forum acusticum 2005 Budapest, 1987-1992

    25. [25]

      Blevins, R. D. Formulas for natural frequency and mode shape. Krieger Pub Co, ISBN-13: 978-1575241845, ISBN-10: 1575241846, 2001

    26. [26]

      Zhu, X. Z.; Chen, Z. B.; Jiao, Y. H.; Wang, Y. P. Broadening of the sound absorption bandwidth of the perforated panel using a membrane-type resonator. ASME J. Vib. Acoust. 2018, 140(3), 031014  doi: 10.1115/1.4038942

  • 加载中
    1. [1]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    2. [2]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    3. [3]

      Xiujuan WangYijie WangLuyun CuiWenqiang GaoXiao LiHong LiuWeijia ZhouJingang Wang . Coordination-based synthesis of Fe single-atom anchored nitrogen-doped carbon nanofibrous membrane for CO2 electroreduction with nearly 100% CO selectivity. Chinese Chemical Letters, 2024, 35(12): 110031-. doi: 10.1016/j.cclet.2024.110031

    4. [4]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    5. [5]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    6. [6]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    7. [7]

      Kang Wang Qinglin Zhou Weijin Li . Conductive metal-organic frameworks for electromagnetic wave absorption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100325-100325. doi: 10.1016/j.cjsc.2024.100325

    8. [8]

      Tianze WangJunyi RenDongxiang ZhangHuan WangJianjun DuXin-Dong JiangGuiling Wang . Development of functional dye with redshifted absorption based on Knoevenagel condensation at 1-site in phenyl[b]-fused BODIPY. Chinese Chemical Letters, 2024, 35(6): 108862-. doi: 10.1016/j.cclet.2023.108862

    9. [9]

      Lu LiSuticha ChuntaXianzi ZhengHaisheng HeWei WuYi Luβ-Lactoglobulin stabilized lipid nanoparticles enhance oral absorption of insulin by slowing down lipolysis. Chinese Chemical Letters, 2024, 35(4): 108662-. doi: 10.1016/j.cclet.2023.108662

    10. [10]

      Wenkai LiuYanxian HouWeijian LiuRan WangShan HeXiang XiaChengyuan LvHua GuQichao YaoQingze PanZehou SuDanhong ZhouWen SunJiangli FanXiaojun Peng . Se-substituted pentamethine cyanine for anticancer photodynamic therapy mediated using the hot band absorption process. Chinese Chemical Letters, 2024, 35(12): 109631-. doi: 10.1016/j.cclet.2024.109631

    11. [11]

      Manyu ZhuFei LiangLie WuZihao LiChen WangShule LiuXiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962

    12. [12]

      Zhenfei TangYunwu ZhangZhiyuan YangHaifeng YuanTong WuYue LiGuixiang ZhangXingzhi WangBin ChangDehui SunHong LiuLili ZhaoWeijia Zhou . Iron-doping regulated light absorption and active sites in LiTaO3 single crystal for photocatalytic nitrogen reduction. Chinese Chemical Letters, 2025, 36(3): 110107-. doi: 10.1016/j.cclet.2024.110107

    13. [13]

      Xuexia LinYihui ZhouJiafu HongXiaofeng WeiBin LiuChong-Chen Wang . Facile preparation of ZIF-8/ZIF-67-derived biomass carbon composites for highly efficient electromagnetic wave absorption. Chinese Chemical Letters, 2024, 35(9): 109835-. doi: 10.1016/j.cclet.2024.109835

Metrics
  • PDF Downloads(0)
  • Abstract views(864)
  • HTML views(41)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return