Citation: Ying-Lin Zhang, Chuan-Long Li, Tahir Rasheed, Ping Huang, Yong-Feng Zhou. Synthesis, Self-assembly and Electrode Application of Mussel-inspired Alternating Copolymers[J]. Chinese Journal of Polymer Science, ;2018, 36(8): 897-904. doi: 10.1007/s10118-018-2151-6 shu

Synthesis, Self-assembly and Electrode Application of Mussel-inspired Alternating Copolymers

  • Corresponding author: Yong-Feng Zhou, yfzhou@sjtu.edu.cn
  • Received Date: 1 April 2018
    Revised Date: 30 April 2018
    Available Online: 28 May 2018

  • We reported the first mussel-inspired alternating copolymer with a high amount of catechol groups (50% molar ratio) through a facile epoxy-amino click reaction between 9,9-bis(4-(2-glycidyloxyethyl)phenyl fluorene (BGEPF) and dopamine (DA). The obtained copolymers were used to prepare carbon/nitrogen-doped α-Fe2O3 nanoparticles through self-assembly, coordination and calcination, which displayed excellent electrochemical performance as anode materials for Li-ion batteries.
  • 加载中
    1. [1]

      Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318(5849), 426-430.  doi: 10.1126/science.1147241

    2. [2]

      Lee, H.; Lee, B. P.; Messersmith, P. B. A reversible wet/dry adhesive inspired by mussels and geckos. Nature 2007, 448(7151), 338-341.  doi: 10.1038/nature05968

    3. [3]

      Maier, G. P.; Rapp, M. V.; Waite, J. H.; Israelachvili, J. N.; Butler, A. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement. Science 2015, 349(6248), 628-632.  doi: 10.1126/science.aab0556

    4. [4]

      Yin, X.; Wang, J.; Zhou, J.; Li, L. Mussel-inspired modification of microporous polypropylene membranes for functional catalytic degradation. Chinese J. Polym. Sci. 2015, 33(12), 1721-1729  doi: 10.1007/s10118-015-1726-8

    5. [5]

      Wu, S.; Kuang, H.; Meng, F.; Wu, Y.; Li, X.; Jing X.; Huang, Y. Facile preparation of core cross-linked micelles from catechol-containing amphiphilic triblock copolymer. J. Mate. Chem. 2012, 22(30), 15348-15356.  doi: 10.1039/c2jm32081a

    6. [6]

      Harrington, M. J.; Masic, A.; Holtenandersen, N.; Waite, J. H.; Fratzl, P. Iron-clad fibers: A metal-based biological strategy for hard flexible coatings. Science 2010, 328(5975), 216-220.  doi: 10.1126/science.1181044

    7. [7]

      Fullenkamp, D. E.; Barrett, D. G.; Miller, D. R.; Kurutz, J. W.; Messersmith, P. B. pH-dependent cross-linking of catechols through oxidation via Fe3+ and potential implications for mussel adhesion. RSC Adv. 2014, 4(48), 25127-25134.  doi: 10.1039/C4RA03178D

    8. [8]

      Liu, J.; Ye, Q.; Yu, B.; Wang, X.; Zhou, F. Contact printing a biomimetic catecholic monolayer on a variety of surfaces and derivation reaction. Chem. Commun. 2012, 48(3), 398-400.  doi: 10.1039/C1CC15341B

    9. [9]

      Isakova, A.; Topham, P. D.; Sutherland, A. J. Controlled RAFT polymerization and zinc binding performance of catechol-inspired homopolymers. Macromolecules 2014, 47(8), 2561-2568.  doi: 10.1021/ma500336u

    10. [10]

      Ling, D.; Park, W.; Park, Y. I.; Lee, N.; Li, F.; Song, C.; Yang, S. G.; Choi, S. H.; Na, K.; Hyeon, T. Multiple-interaction ligands inspired by mussel adhesive protein: synthesis of highly stable and biocompatible nanoparticles. Angew. Chem. Int. Ed. 2011, 50(48), 11360-11365.  doi: 10.1002/anie.v50.48

    11. [11]

      Lee, H.; Scherer, N. F.; Messersmith, P. B. Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. U. S. A. 2006, 103(35), 12999-13003.  doi: 10.1073/pnas.0605552103

    12. [12]

      Ryou, M. H.; Kim, J.; Lee, I.; Kim, S.; Jeong, Y. K.; Hong, S.; Ryu, J. H.; Kim, T. S.; Park, J. K.; Lee, H. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 2013, 25(11), 1571-1576.  doi: 10.1002/adma.201203981

    13. [13]

      Na, H. B.; Palui, G.; Rosenberg, J. T.; Ji, X.; Grant, S. C.; Mattoussi, H. Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. ACS Nano 2012, 6(1), 389-399.  doi: 10.1021/nn203735b

    14. [14]

      Lee, Y.; Lee, H.; Kim, Y. B.; Kim, J.; Hyeon, T.; Park, H.; Messersmith, P. B.; Park, T. G. Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Adv. Mater. 2008, 20(21), 4154-4157.

    15. [15]

      Westwood, G.; Horton, T. N.; Wilker, J. J. Simplified polymer mimics of cross-linking adhesive proteins. Macromolecules 2007, 40(11), 3960-3964.  doi: 10.1021/ma0703002

    16. [16]

      Stepuk, A.; Halter, J. G.; Schaetz, A.; Grass, R. N.; Stark, W. J. Mussel-inspired load bearing metal-polymer glues. Chem. Commun. 2012, 48(50), 6238-6240.  doi: 10.1039/c2cc31996a

    17. [17]

      Lee, H.; Kang, D. L.; Pyo, K. B.; Park, S. Y.; Lee, H. Catechol-grafted poly(ethylene glycol) for PEGylation on versatile substrates. Langmuir 2010, 26(6), 3790-3793.  doi: 10.1021/la904909h

    18. [18]

      Satoh, H.; Saito, Y.; Yabu, H. Robust platforms for creating organic-inorganic nanocomposite microspheres: decorating polymer microspheres containing mussel-inspired adhesion layers with inorganic nanoparticles. Chem. Commun. 2014, 50(94), 14786-14789.  doi: 10.1039/C4CC05433D

    19. [19]

      Saito, Y.; Yabu, H. Synthesis of poly(dihydroxystyrene-block-styrene) (PDHSt-b-PSt) by the RAFT process and preparation of organic-solvent-dispersive Ag NPs by automatic reduction of metal ions in the presence of PDHSt-b-PSt. Chem. Commun. 2015, 51(18), 3743-3746.  doi: 10.1039/C4CC08366K

    20. [20]

      Li, P.; Chevallier, P.; Ramrup, P.; Biswas, D.; Vuckovic, D.; Fortin, M. A.; Oh, J. K. Mussel-inspired multidentate block copolymer to stabilize ultrasmall superparamagnetic Fe3O4 for magnetic resonance imaging contrast enhancement and excellent colloidal stability. Chem. Mater. 2015, 27(20), 7100-7109.  doi: 10.1021/acs.chemmater.5b03028

    21. [21]

      Saito, Y.; Higuchi, T.; Jinnai, H.; Hara, M.; Nagano, S.; Matsuo, Y.; Yabu, H. Silver nanoparticle arrays prepared by in situ automatic reduction of silver ions in mussel-inspired block copolymer films. Macromol. Chem. Phys. 2016, 217(6), 726-734.  doi: 10.1002/macp.v217.6

    22. [22]

      Cho, J. H.; Shanmuganathan, K.; Ellison, C. J. Bioinspired catecholic copolymers for antifouling surface coatings. ACS Appl. Mater. Interfaces 2013, 5(9), 3794-3802.  doi: 10.1021/am400455p

    23. [23]

      Lee, B. P.; Messersmith, P. B.; Israelachvili, J. N.; Waite, J. H. Mussel-inspired adhesives and coatings. Annu. Rev. Mater. Res. 2011, 41(1), 99-132.  doi: 10.1146/annurev-matsci-062910-100429

    24. [24]

      Chen, J.; Yu, C.; Shi, Z.; Yu, S.; Lu, Z.; Jiang, W.; Zhang, M.; He, W.; Zhou, Y.; Yan, D. Ultrathin alternating copolymer nanotubes with readily tunable surface functionalities. Angew. Chem. Int. Ed. 2015, 54(12), 3621-3625.  doi: 10.1002/anie.201408290

    25. [25]

      Li, C.; Chen, C.; Li, S.; Rasheed, T.; Huang, P.; Huang, T.; Zhang, Y.; Huang, W.; Zhou, Y. Self-assembly and functionalization of alternating copolymer vesicles. Polym. Chem. 2017, 8(32), 4688-4695.  doi: 10.1039/C7PY00908A

    26. [26]

      Cao, M. H.; Liu, T. F.; Gao, S. Single-crystal dendritic micro-pines of magnetic α-Fe2O3: large-scale synthesis, formation mechanism, and properties. Angew. Chem. Int. Ed. 2005, 44(27), 4197-4201.  doi: 10.1002/(ISSN)1521-3773

    27. [27]

      Lv, X.; Deng, J.; Wang, J.; Zhong, J.; Sun, X. Carbon-coated α-Fe2O3 nanostructures for efficient anode of Li-ion battery. J. Mater. Chem. A 2015, 3(9), 5183-5188.  doi: 10.1039/C4TA06415A

    28. [28]

      Wang, B.; Chen, J. S.; Lou X. W. The comparative lithium storage properties of urchin-like hematite spheres: hollow vs. solid. J. Mater. Chem. 2012, 22(19), 9466-9468.  doi: 10.1039/c2jm31108a

    29. [29]

      Filippidi, E.; Cristiani, T. R.; Eisenbach, C. D.; Waite, J. H.; Israelachvili, J. N.; Ahn, B. K.; Valentine, M. T. Toughening elastomers using mussel-inspired iron-catechol complexes, Science 2017, 358(6362), 502-505.  doi: 10.1126/science.aao0350

    30. [30]

      Zeng, H.; Hwang, D. S.; Israelachvili, J. N.; Waite, J. H. Strong reversible Fe3+-mediated bridging between DOPA-containing protein films in water. Proc. Natl. Acad. Sci. U. S. A. 2010, 107(29), 12850-12853.  doi: 10.1073/pnas.1007416107

    31. [31]

      Monahan, J.; Wilker, J. J. Specificity of metal ion cross-linking in marine mussel adhesives. Chem. Commun. 2003, 14(14), 1672-1673.

    32. [32]

      Liu, Q.; Lu, X.; Li, L.; Zhang, H.; Liu, G.; Zhong, H.; Zeng, H. Probing the reversible Fe3+-DOPA-mediated bridging interaction in mussel foot protein-1. J. Phys. Chem. C 2016, 120(38), 21670-21677  doi: 10.1021/acs.jpcc.6b07482

    33. [33]

      Hwang, D. S.; Zeng, H.; Masic, A.; Harrington, M. J.; Fratzl, P.; Israelachvili, J.; Waite, J. H. Protein-and metal-dependent interactions of a prominent protein in mussel adhesive plaques. J. Biol. Chem. 2010, 285(33), 25850-25858.  doi: 10.1074/jbc.M110.133157

    34. [34]

      Lu, Q.; Hwang, D. S.; Liu, Y.; Zeng, H. Molecular interactions of mussel protective coating protein, mcfp-1, from Mytilus californianus. Biomaterials 2012, 33(6), 1903-1911.  doi: 10.1016/j.biomaterials.2011.11.021

    35. [35]

      Holtenandersen, X.; Mates, T. E.; Toprak, M. S.; Stucky, G. D.; Zok, F. W.; Waite, J. H. Metals and the integrity of a biological coating: the cuticle of mussel byssus. Langmuir 2009, 25(6), 3323-3326.  doi: 10.1021/la8027012

    36. [36]

      Liao, J. X.; Huang, J. H.; Wang, T.; Sun, W. X.; Tong, Z. Rapid shape memory and pH-modulated spontaneous actuation of dopamine containing hydrogels. Chinese J. Polym. Sci. 2017, 35(10), 1297-1306  doi: 10.1007/s10118-017-1991-9

    37. [37]

      Dong, M. J.; Liu, S. L.; Tan, L. H.; Cen, L.; Fu, G. D. Hydrogels of chemically cross-linked and organ-metallic complexed interpenetrating PEG networks. Chinese J. Polym. Sci. 2016, 34(5), 637-648  doi: 10.1007/s10118-016-1783-7

    38. [38]

      Zhang, H.; Sun, X.; Huang, X.; Zhou, L. Encapsulation of α-Fe2O3 nanoparticles in graphitic carbon microspheres as high-performance anode materials for lithium-ion batteries. Nanoscale 2015, 7(7), 3270-3275.  doi: 10.1039/C4NR06771A

    39. [39]

      Guo, W.; Sun, W.; Lv, L. P.; Kong, S.; Wang, Y. Microwave-assisted morphology evolution of Fe-based metal-organic frameworks and their derived Fe2O3 nanostructures for li-ion storage. ACS Nano 2017, 11(4), 4198-4205.  doi: 10.1021/acsnano.7b01152

    40. [40]

      Wang, Y.; Guo, X.; Wang, Z.; Lü, M.; Wu, B.; Wang, Y.; Yan, C.; Yuan, A.; Yang, H. Controlled pyrolysis of MIL-88A to Fe2O3@C nanocomposites with varied morphologies and phases for advanced lithium storage. J. Mater. Chem. A 2017, 48(5), 25562-25573.

    41. [41]

      Wang, Z.; Luan, D.; Madhavi, S.; Hu, Y.; Lou, X. W. Assembling carbon-coated α-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci. 2012, 5(1), 5252-5256.  doi: 10.1039/C1EE02831F

    42. [42]

      Xu, X.; Cao, R.; Jeong, S.; Cho, J. Spindle-like mesoporous α-Fe2O3 anode material prepared from MOF template for high-rate lithium batteries. Nano Lett. 2012, 12(9), 4988-4991.  doi: 10.1021/nl302618s

    43. [43]

      Wang, Y.; Han, J.; Gu, X.; Dimitrijev, S.; Hou, Y.; Zhang, S. Ultrathin Fe2O3 nanoflakes using smart chemical stripping for high performance lithium storage. J. Mater. Chem. A 2017, 5(35), 18737-18743.  doi: 10.1039/C7TA05798A

    44. [44]

      Cao, K.; Jiao, L.; Liu, H.; Liu, Y.; Wang, Y.; Guo, Z.; Yuan, H. 3D Hierarchical porous α-Fe2O3 nanosheets for high-performance lithium-ion batteries. Adv. Energy Mater. 2015, 5(4), 1401421.  doi: 10.1002/aenm.201401421

    45. [45]

      Yang, Y.; Liu, Y.; Pu, K.; Chen, X.; Tian, H.; Gao, M.; Zhu, M.; Pan, H. Highly stable cycling of amorphous Li2CO3-coated α-Fe2O3 nanocrystallines prepared via a new mechanochemical strategy for Li-ion batteries. Adv. Funct. Mater. 2017, 27(3), 1605011.  doi: 10.1002/adfm.v27.3

    46. [46]

      Varcoe, J. R.; Atanassov, P.; Dekel, D. R.; Herring, A. M.; Hickner, M. A.; Kohl, P. A.; Kucernak, A. R.; Mustain, W. E.; Nijmeijer, K.; Scott, K. Anion-exchange membranes in electrochemical energy systems. Energy. Environ. Sci. 2014, 7(10), 3135-3191.  doi: 10.1039/C4EE01303D

    47. [47]

      Li, X.; Ma, Y.; Qin, L.; Zhang, Z.; Zhang, Z.; Zheng, Y. Z.; Qu, Y. A bottom-up synthesis of α-Fe2O3 nanoaggregates and their composites with graphene as high performance anodes in lithium-ion batteries. J. Mater. Chem. A 2015, 3(5), 2158-2165.  doi: 10.1039/C4TA05420B

  • 加载中
    1. [1]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

    2. [2]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    3. [3]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    4. [4]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    5. [5]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    6. [6]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    7. [7]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    8. [8]

      Yue Zheng Tianpeng Huang Pengxian Han Jun Ma Guanglei Cui . Cathodal Li-ion interfacial transport in sulfide-based all-solid-state batteries: Challenges and improvement strategies. Chinese Journal of Structural Chemistry, 2024, 43(10): 100390-100390. doi: 10.1016/j.cjsc.2024.100390

    9. [9]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    10. [10]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    11. [11]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    12. [12]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    13. [13]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    14. [14]

      Qian WangTing GaoXiwen LuHangchao WangMinggui XuLongtao RenZheng ChangWen Liu . Nanophase separated, grafted alternate copolymer styrene-maleic anhydride as an efficient room temperature solid state lithium ion conductor. Chinese Chemical Letters, 2024, 35(7): 108887-. doi: 10.1016/j.cclet.2023.108887

    15. [15]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    16. [16]

      Tian CaoXuyin DingQiwen PengMin ZhangGuoyue Shi . Intelligent laser-induced graphene sensor for multiplex probing catechol isomers. Chinese Chemical Letters, 2024, 35(7): 109238-. doi: 10.1016/j.cclet.2023.109238

    17. [17]

      Tianyi Hou Yunhui Huang Henghui Xu . Interfacial engineering for advanced solid-state Li-metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100313-100313. doi: 10.1016/j.cjsc.2024.100313

    18. [18]

      Xuejie GaoXinyang ChenMing JiangHanyan WuWenfeng RenXiaofei YangRuncang Sun . Long-lifespan thin Li anode achieved by dead Li rejuvenation and Li dendrite suppression for all-solid-state lithium batteries. Chinese Chemical Letters, 2024, 35(10): 109448-. doi: 10.1016/j.cclet.2023.109448

    19. [19]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    20. [20]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

Metrics
  • PDF Downloads(0)
  • Abstract views(642)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return