Citation: Yong Zhou, Pei Bai, Miao Huo, Yu-Jie Chen, Hua Li, Hong-Mei Kang, He-Zhou Liu, Yun-Long Guo. Slow Down Dewetting in Polymer Films by Isocyanate-treated Graphite Oxide[J]. Chinese Journal of Polymer Science, ;2018, 36(9): 1070-1076. doi: 10.1007/s10118-018-2147-2 shu

Slow Down Dewetting in Polymer Films by Isocyanate-treated Graphite Oxide

  • Corresponding author: Yun-Long Guo, yunlong.guo@sjtu.edu.cn
  • Received Date: 25 December 2017
    Revised Date: 28 February 2018
    Accepted Date: 1 May 2018
    Available Online: 1 June 2018

  • Isocyanate-treated graphite oxides (iGOs) were well-dispersed into the polystyrene (PS) thin films and formed a novel network structure. With control in fabrication, an iGOs-web layer was horizontally embedded near the surface of the films and thus formed a composite slightly doped by iGOs. This work demonstrated that the iGOs network can remarkably depress the dewetting process in the polymer matrix of the composite, while dewetting often leads to rupture of polymer films and is considered as a major practical limit in using polymeric materials above their glass transition temperatures (Tg). Via annealing the 50–120 nm thick composite and associated neat PS films at temperatures ranging from 35 °C to 70 °C aboveTg, surface morphology evolution of the films was monitored by atomic force microscopy (AFM). The iGOs-doped PS exhibited excellent thermal stability, i.e., the number of dewetting holes was greatly reduced and the long-term hole growth was fairly restricted. In contrast, the neat PS film showed serious surface fluctuation and a final rupture induced by ordinary dewetting. The method developed in this work may pave a road to reinforce thin polymer films and enhance their thermal stability, in order to meet requirements by technological advances.
  • 加载中
    1. [1]

      Reiter, G. Dewetting of thin polymer films. Phys. Rev. Lett. 1992, 68(1), 75  doi: 10.1103/PhysRevLett.68.75

    2. [2]

      Xie, R.; Karim, A.; Douglas, J. F.; Han, C. C.; Weiss, R. A. Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 1998, 81(6), 1251−1254  doi: 10.1103/PhysRevLett.81.1251

    3. [3]

      Reiter, G. Unstable thin polymer films: rupture and dewetting processes. Langmuir 1993, 9(5), 1344−1351  doi: 10.1021/la00029a031

    4. [4]

      Reiter, G.; Sharma, A.; Casoli, A.; David, M.; Khanna, R.; Auroy, A. Thin film instability induced by long-range forces. Langmuir 1999, 15(7), 2551−2558  doi: 10.1021/la981470y

    5. [5]

      Faldi, A.; Composto, R. J.; Winey, K. I. Unstable polymer bilayers. 1. morphology of dewetting. Langmuir 1995, 11(12), 4855−4861  doi: 10.1021/la00012a044

    6. [6]

      Qi, P.; Winey, K. I.; Hu, H. H.; Composto, R. J. Unstable polymer bilayers. 2. the effect of film thickness. Langmuir 1997, 13(6), 1758−1766  doi: 10.1021/la960757x

    7. [7]

      Stange, T. G.; Evans, D. F.; Hendrickson, W. A. Nucleation and growth of defects leading to dewetting of thin polymer films. Langmuir 1997, 13(16), 4459−4465  doi: 10.1021/la962090k

    8. [8]

      David, M. O.; Reiter, G.; Sitthaï T.; Schultz, J. Deformation of a glassy polymer film by long-range intermolecular forces. Langmuir 1998, 14(20), 5667−5672  doi: 10.1021/la9804785

    9. [9]

      Safran, S. A.; Klein, J. Surface instability of viscoelastic thin films. J. Phys. B: At., Mol. Opt. Phys. 1993, 3(5), 749−757

    10. [10]

      Wensink, K. D. F.; Jérôme B. Dewetting induced by density fluctuations. Langmuir 2002, 18(2), 413−416  doi: 10.1021/la015611z

    11. [11]

      Reiter, G.; Hamieh, M.; Damman, P.; Sclavons, S., Gabriele, S.; Vilmin, T; Raphael, E. Residual stresses in thin polymer films cause rupture and dominate early stages of dewetting. Nat. Mater. 2005, 4(10), 754  doi: 10.1038/nmat1484

    12. [12]

      Kim, H. I.; Mate, C. M.; Hannibal, K. A.; Perry, S. S. How disjoining pressure drives the dewetting of a polymer film on a silicon surface. Phys. Rev. Lett. 1999, 82(17), 3496−3499  doi: 10.1103/PhysRevLett.82.3496

    13. [13]

      Rittigstein, P.; Priestley, R. D.; Broadbelt, L. J.; Torkelson, J. M. Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 2007, 6(4), 278  doi: 10.1038/nmat1870

    14. [14]

      Desai, T.; Keblinski, P.; Kumar, S. K. Molecular dynamics simulations of polymer transport in nanocomposites. J. Chem. Phys. 2005, 122(13), 134910  doi: 10.1063/1.1874852

    15. [15]

      Alcoutlabi, M.; Mckenna, G. B. Effects of confinement on material behaviour at the nanometre size scale. J. Phys-Condense Mat. 2005, 17(15), R461−R524  doi: 10.1088/0953-8984/17/15/R01

    16. [16]

      Mackay, M. E.; Tuteja, A.; Duxbury, P. M.; Hawker, C. J.; Horn, B. V.; Guan, Z.; Chen, G.; Krishnan, R. S. General strategies for nanoparticle dispersion. Science 2006, 311(5768), 1740  doi: 10.1126/science.1122225

    17. [17]

      Balazs, A. C.; Emrick, T.; Russell, T. P. Nanoparticle polymer composites: where two small worlds meet. Science 2006, 314(5802), 1107−1110  doi: 10.1126/science.1130557

    18. [18]

      Ohno, K.; Morinaga, T.; Takeno, S.; Yoshinobu Tsujii, A.; Fukuda, T. Suspensions of silica particles grafted with concentrated polymer brush: effects of graft chain length on brush layer thickness and colloidal crystallization. Macromolecules 2007, 40(25), 9143−9150  doi: 10.1021/ma071770z

    19. [19]

      Wong, H. C.; Cabral, J. T. Spinodal clustering in thin films of nanoparticle-polymer mixtures. Phys. Rev. Lett. 2010, 105(3), 038301  doi: 10.1103/PhysRevLett.105.038301

    20. [20]

      Barnes, K. A.; Karim, A.; Douglas, J. F.; Nakatani, A. I.; Gruell, H.; Amis, E. J. Suppression of dewetting in nanoparticle-filled polymer films. Macromolecules 2000, 33(11), 4177−4185  doi: 10.1021/ma990614s

    21. [21]

      Bandyopadhyay, D.; Douglas, J. F.; Karim, A. Influence of C60 nanoparticles on the stability and morphology of miscible polymer blend films. Macromolecules 2011, 20(20), 8136−8142

    22. [22]

      Wong, H. C.; Cabral, J. T. Spinodal clustering in thin films of nanoparticle-polymer mixtures. Phys. Rev. Lett. 2010, 105(3), 038301  doi: 10.1103/PhysRevLett.105.038301

    23. [23]

      Liu, T. X.; Phang, I. Y.; Lu, S.; And, S. Y. C.; Zhang, W. D. Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 2004, 37(19), 7214−7222  doi: 10.1021/ma049132t

    24. [24]

      Kim, B.; Lee, J.; Yu, I. Electrical properties of single-wall carbon nanotube and epoxy composites. J. Appl. Phys. 2003, 94(10), 6724−6728  doi: 10.1063/1.1622772

    25. [25]

    26. [26]

      Che, J.; Park, K.; Grabowski, C. A.; Jawaid, A.; Kelley, J.; Koerner, H.; Vaia, R. A. Preparation of ordered monolayers of polymer grafted nanoparticles: impact of architecture, concentration, and substrate surface energy. Macromolecules 2016, 49(5), 1834−1847  doi: 10.1021/acs.macromol.5b02722

    27. [27]

      Ramanathan, T.; Abdala, A. A.; Stankovich, S.; Dikin, D. A.; Herrera-Alonso, M.; Piner, R. D.; Adamson, D. H.; Schniepp, H. C.; Chen, X.; Ruoff, R. S.; Nguyen, S. T.; Aksay, I. A.; Prud'Homme, R. K.; Brinson, L. C. Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 2008, 3(6), 327−331  doi: 10.1038/nnano.2008.96

    28. [28]

      Potts, J. R.; Dreyer, D. R.; Bielawski, C. W.; Ruoff, R. S. Graphene-based polymer nanocomposites. Polymer 2011, 52(1), 5−25  doi: 10.1016/j.polymer.2010.11.042

    29. [29]

      Cao, P.; Bai, P.; Omrani, A. A.; Xiao, Y.; Meaker, K. L.; Tsai, H. Z.; Yan, A.; Jung, H. S.; Khajeh, R.; Rodgers, G. F.; Kim, Y.; Aikawa, A. S.; Kolaczkowski, M. A.; Liu, Y.; Zettl, A.; Xu, K.; Crommie, M. F.; Xu, T. Preventing thin film dewetting via graphene capping. Adv. Mater. 2017, 29(36), 1701536  doi: 10.1002/adma.201701536

    30. [30]

      Stankovich, S.; Piner, R. D.; Nguyen, S. B. T.; Ruoff, R. S. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 2006, 44(15), 3342−3347  doi: 10.1016/j.carbon.2006.06.004

    31. [31]

      Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based composite materials. Nature 2006, 442(7100), 282−286  doi: 10.1038/nature04969

    32. [32]

      Chai, Y.; Salez, T.; Mcgraw, J. D.; Benzaquen, M.; Dalnoki-Veress, K.; Raphael, E.; Forrest, J. A. A direct quantitative measure of surface mobility in a glassy polymer. Science 2014, 343(6174), 994  doi: 10.1126/science.1244845

    33. [33]

      Zhu, Y.; Yang, Q.; You, J.; Li, Y. Composition fluctuation intensity effect on the stability of polymer films. RSC Adv. 2016, 6(74), 69715−69719  doi: 10.1039/C6RA12723A

  • 加载中
    1. [1]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    2. [2]

      Hang Meng Bicheng Zhu Ruolun Sun Zixuan Liu Shaowen Cao Kan Zhang Jiaguo Yu Jingsan Xu . Dynamic photoluminescence switching of carbon nitride thin films for anticounterfeiting and encryption. Chinese Journal of Structural Chemistry, 2024, 43(10): 100410-100410. doi: 10.1016/j.cjsc.2024.100410

    3. [3]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    4. [4]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    5. [5]

      Chaozheng HePei ShiDonglin PangZhanying ZhangLong LinYingchun Ding . First-principles study of the relationship between the formation of single atom catalysts and lattice thermal conductivity. Chinese Chemical Letters, 2024, 35(6): 109116-. doi: 10.1016/j.cclet.2023.109116

    6. [6]

      Gang LangJing FengBo FengJunlan HuZhiling RanZhiting ZhouZhenju JiangYunxiang HeJunling Guo . Supramolecular phenolic network-engineered C–CeO2 nanofibers for simultaneous determination of isoniazid and hydrazine in biological fluids. Chinese Chemical Letters, 2024, 35(6): 109113-. doi: 10.1016/j.cclet.2023.109113

    7. [7]

      Pingping WangHuixian MiaoKechuan ShengBin WangFan FengXuankun CaiWei HuangDayu Wu . Efficient blue-light-excitable copper(Ⅰ) coordination network phosphors for high-performance white LEDs. Chinese Chemical Letters, 2024, 35(4): 108600-. doi: 10.1016/j.cclet.2023.108600

    8. [8]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    9. [9]

      Rui Liu Jinbo Pang Weijia Zhou . Monolayer water shepherding supertight MXene/graphene composite films. Chinese Journal of Structural Chemistry, 2024, 43(10): 100329-100329. doi: 10.1016/j.cjsc.2024.100329

    10. [10]

      Wei-Yu ZhouZi-Han XiNing-Ning DuLi YeMing-Hao JiangJin-Le HaoBin LinGuo-Dong YaoXiao-Xiao HuangShao-Jiang Song . Rapid discovery of two unprecedented meroterpenoids from Daphne altaica Pall. using molecular networking integrated with MolNetEnhancer and Network Annotation Propagation. Chinese Chemical Letters, 2024, 35(8): 109030-. doi: 10.1016/j.cclet.2023.109030

    11. [11]

      Yi Herng ChanZhe Phak ChanSerene Sow Mun LockChung Loong YiinShin Ying FoongMee Kee WongMuhammad Anwar IshakVen Chian QuekShengbo GeSu Shiung Lam . Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chinese Chemical Letters, 2024, 35(8): 109329-. doi: 10.1016/j.cclet.2023.109329

    12. [12]

      Tong SuYue WangQizhen ZhuMengyao XuNing QiaoBin Xu . Multiple conductive network for KTi2(PO4)3 anode based on MXene as a binder for high-performance potassium storage. Chinese Chemical Letters, 2024, 35(8): 109191-. doi: 10.1016/j.cclet.2023.109191

    13. [13]

      Rongliang DengYihang ChenXiaotong FanGuolong ChenShuli WangChangzhi YuXiao YangTingzhu WuZhong ChenYue Lin . Break of thermal equilibrium between optical and acoustic phonon branches of CsPbI3 under continuous-wave light excitation and cryogenic temperature. Chinese Chemical Letters, 2024, 35(7): 109346-. doi: 10.1016/j.cclet.2023.109346

    14. [14]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    15. [15]

      Hong Chen Mao-Yin Ran Long-Hua Li Xin-Tao Wu Hua Lin . [Cs14Cl][Tm71Se110]: An unusual salt-inclusion chalcogenide containing different valent Tm centers and ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100397-100397. doi: 10.1016/j.cjsc.2024.100397

    16. [16]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    17. [17]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    18. [18]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

    19. [19]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    20. [20]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

Metrics
  • PDF Downloads(0)
  • Abstract views(573)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return