Citation: Lu Chen, Kuan Hu, Si-Ting Sun, Hai Jiang, Dong Huang, Kun-Yu Zhang, Li Pan, Yue-Sheng Li. Toughening Poly(lactic acid) with Imidazolium-based Elastomeric Ionomers[J]. Chinese Journal of Polymer Science, ;2018, 36(12): 1342-1352. doi: 10.1007/s10118-018-2143-6 shu

Toughening Poly(lactic acid) with Imidazolium-based Elastomeric Ionomers

  • Imidazolium-based elastomeric ionomers (i-BIIR) were facilely synthesized by ionically modified brominated poly(isobutylene-co-isoprene) (BIIR) with different alkyl chain imidazole and thoroughly explored as novel toughening agents for poly(lactic acid) (PLA). The miscibility, thermal behavior, phase morphology and mechanical property of ionomers and blends were investigated through dynamic mechanical analyses (DMA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile and impact testing. DMA and SEM results showed that better compatibility between the PLA and i-BIIR was achieved compared to the PLA/unmodified BIIR elastomer. A remarkable improvement in ductility with an optimum elongation at break up to 235% was achieved for the PLA/i-BIIR blends with 1-dodecylimidazole alkyl chain (i-BIIR-12), more than 10 times higher than that of pure PLA. The impact strengths of PLA were enhanced from 1.9 kJ/m2 to 4.1 kJ/m2 for the PLA/10 wt% i-BIIR-12 blend. Toughening mechanism had been established by systematical analysis of the compatibility, intermolecular interaction and phase structures of the blends. Interfacial cavitations initiated massive shear yielding of the PLA matrix owing to a suitable interfacial adhesion which played a key role in the enormous toughening effect in these blends. We believed that introducing imidazolium group into the BIIR elastomer was vital for the formation of a suitable interfacial adhesion.
  • 加载中
    1. [1]

      Chen, G. Q.; Patel, M. K. Plastics derived from biological sources: present and future: a technical and environmental review. Chem. Rev. 2012, 112(4), 2082−2099  doi: 10.1021/cr200162d

    2. [2]

      Zhang, X. Y.; Fevre, M.; Jones, G. O.; Waymouth, R. M. Catalysis as an enabling science for sustainable polymers. Chem. Rev. 2018, 118(2), 839−885  doi: 10.1021/acs.chemrev.7b00329

    3. [3]

      Auras, R.; Harte, B.; Selke, S. An overview of polylactides as packaging materials. Macromol. Biosci. 2004, 4(9), 835−864  doi: 10.1002/(ISSN)1616-5195

    4. [4]

      Farah, S.; Anderson, D. G.; Langer, R. Physical and mechanical properties of PLA, and their functions in widespread applications - a comprehensive review. Adv. Drug Deliv. Rev. 2016, 107(21), 367−392

    5. [5]

      Hou, J. Z.; Sun, X. P.; Zhang, W. X.; Li, L. L.; Teng, H. Preparation and characterization of electrospun fibers based on poly(L-lactic acid)/cellulose acetate. Chinese J. Polym. Sci. 2012, 30(6), 916−922  doi: 10.1007/s10118-012-1191-6

    6. [6]

      Yao, C.; Li, X. S.; Neoh, K. G.; Shi, Z. L.; Kang, E. T. Antibacterial poly(D,L-lactide) (PDLLA) fibrous membranes modified with quaternary ammonium moieties. Chinese J. Polym. Sci. 2010, 28(4), 581−588  doi: 10.1007/s10118-010-9094-x

    7. [7]

      Wu, N. J.; Zhang, H.; Fu, G. L. Super-tough poly(lactide) thermoplastic vulcanizates based on modified natural rubber. ACS Sustain. Chem. Eng. 2017, 5(1), 78−84  doi: 10.1021/acssuschemeng.6b02197

    8. [8]

      Wang, P.; Xu, P.; Wei, H. B.; Fang, H. G.; Ding, Y. S. Effect of block copolymer containing ionic liquid moiety on interfacial polarization in PLA/PCL blends. J. Appl. Polym. Sci. 2018, 10.1002/APP.46161  doi: 10.1002/APP.46161

    9. [9]

      Delgado, P. A.; Hillmyer, M. A. Combining block copolymers and hydrogen bonding for poly(lactide) toughening. RSC Adv. 2014, 4(26), 13266−13273  doi: 10.1039/c4ra00150h

    10. [10]

      Hao, Y. P.; Ge, H. H.; Han, L. J.; Zhang, H. L.; Dong, L. S.; Sun, S. L. Thermal and mechanical properties of polylactide toughened with a butyl acrylate-ethyl acrylate-glysidyl methacrylate copolymer. Chinese J. Polym. Sci. 2013, 31(11), 1519−1527  doi: 10.1007/s10118-013-1350-4

    11. [11]

      Zhang, K. Toughened sustainable green composites from poly(3-hydroxybutyrate-co-3-hydroxyvalerate) based ternary blends and miscanthus biofiber. ACS Sustain. Chem. Eng. 2014, 2(10), 2345−2354  doi: 10.1021/sc500353v

    12. [12]

      Yu, R. L.; Zhang, L. S.; Feng, Y. H.; Zhang, R. Y.; Zhu, J. Improvement in toughness of polylactide by melt blending with bio-based poly(ester)urethane. Chinese J. Polym. Sci. 2014, 32(8), 1099−1110  doi: 10.1007/s10118-014-1487-9

    13. [13]

      Xing, Q.; Li, R. B.; Dong, X.; Zhang, X. Q.; Zhang, L. Y.; Wang, D. J. Phase morphology, crystallization behavior and mechanical properties of poly(L-lactide) toughened with biodegradable polyurethane: effect of composition and hard segment ratio. Chinese J. Polym. Sci. 2015, 33(9), 1294−1304  doi: 10.1007/s10118-015-1679-y

    14. [14]

      Zhang, K. Y.; Ran, X. H.; Wang, X. M.; Han, C. Y.; Han, L. J.; Wen, X.; Zhuang, Y. G.; Dong, L. S. Improvement in toughness and crystallization of poly(L-lactic acid) by melt blending with poly(epichlorohydrin-co-ethylene oxide). Polym. Eng. Sci. 2011, 51(12), 2370−2380  doi: 10.1002/pen.v51.12

    15. [15]

      Yuan, D. S.; Chen, Z. H.; Xu, C. H.; Chen, K. L.; Chen, Y. K. Fully biobased shape memory material based on novel cocontinuous structure in poly(lactic acid)/natural rubber TPVs fabricated via peroxide-induced dynamic vulcanization and in situ interfacial compatibilization. ACS Sustain. Chem. Eng. 2015, 3(11), 2856−2865  doi: 10.1021/acssuschemeng.5b00788

    16. [16]

      Zhang, K. Y.; Nagarajan, V.; Misra, M.; Mohanty, A. K. Supertoughened renewable PLA reactive multiphase blends system: phase morphology and performance. ACS Appl. Mater. Interfaces 2014, 6(15), 12436−12448  doi: 10.1021/am502337u

    17. [17]

      Dong, W. Y.; He, M. F.; Wang, H. T.; Ren, F. L.; Zhang, J. Q.; Zhao, X. W.; Li, Y. J. PLLA/ABS blends compatibilized by reactive comb polymers: double Tg depression and significantly improved toughness. ACS Sustain. Chem. Eng. 2015, 3(10), 2542−2550  doi: 10.1021/acssuschemeng.5b00740

    18. [18]

      Lin, Y.; Zhang, K. Y.; Dong, Z. M.; Dong, L. S.; Li, Y. S. Study of hydrogen-bonded blend of polylactide with biodegradable hyperbranched poly(ester amide). Macromolecules 2007, 40(17), 6257−6267  doi: 10.1021/ma070989a

    19. [19]

      Han, S. I.; Yoo, Y. T; Kim, D. K.; Im, S. S. Biodegradable aliphatic polyester ionomers. Macromol. Biosci. 2004, 4(3), 199−207  doi: 10.1002/(ISSN)1616-5195

    20. [20]

      Park, S. B.; Hwang, S. Y.; Moon, C. W.; Im, S. S. Plasticizer effect of novel PBS ionomer in PLA/PBS ionomer blends. Macromol. Res. 2010, 18(5), 463−471  doi: 10.1007/s13233-010-0512-2

    21. [21]

      Liu, H. Z.; Chen, F.; Liu, B.; Estep, G.; Zhang, J. W. Super toughened poly(lactic acid) ternary blends by simultaneous dynamic vulcanization and interfacial compatibilization. Macromolecules 2010, 43(14), 6058−6066  doi: 10.1021/ma101108g

    22. [22]

      Liu, H. Z.; Song, W. J.; Chen, F.; Guo, L.; Zhang, J. W. Interaction of microstructure and interfacial adhesion on impact performance of polylactide (PLA) ternary blends. Macromolecules 2011, 44(6), 1513−1522  doi: 10.1021/ma1026934

    23. [23]

      Liu, H. Z.; Guo, X. J.; Song, W. J.; Zhang, J. W. Effects of metal ion type on ionomer-assisted reactive toughening of poly(lactic acid). Ind. Eng. Chem. Res. 2013, 52(13), 4787−4793  doi: 10.1021/ie303317k

    24. [24]

      Megevand, B.; Pruvost, S.; Lins, L. C.; Livil, S.; Gérard, J. F.; Duchet-Rumeau, J. Probing nanomechanical properties with AFM to understand the structure and behavior of polymer blends compatibilized with ionic liquids. RSC Adv. 2016, 6(98), 96421−96430  doi: 10.1039/C6RA18492H

    25. [25]

      Lins, L. C.; Livi, S.; Duchet-Rumeau, J.; Gérard, J. F. Phosphonium ionic liquids as new compatibilizing agents of biopolymer blends composed of poly(butylene-adipate-co-terephtalate)/poly(lactic acid) (PBAT/PLA). RSC Adv. 2015, 5(73), 59082−59092  doi: 10.1039/C5RA10241C

    26. [26]

      Wang, P.; Zhang, D.; Zhou, Y. Y.; Li, Y.; Fang, H. G.; Wei, H. B.; Ding, Y. S. A well-defined biodegradable 1,2,3-triazolium-functionalized PEG-b-PCL block copolymer: facile synthesis and its compatibilization for PLA/PCL blends. Ionics 2018, 10.1007/s11581-017-2234-3  doi: 10.1007/s11581-017-2234-3

    27. [27]

      Jérémy, O.; Jean-Marie, R.; Cédric, S.; Sophie, B.; Apostolos, E.; Dubois, P.; Giannelis, E. P. Shape-memory behavior of polylactide/silica ionic hybrids. Macromolecules 2017, 50(7), 2896−2905  doi: 10.1021/acs.macromol.7b00195

    28. [28]

      Livi, S.; Duchet-Rumeau, J.; Gérard, J. F.; Pham, T. N. Polymers and ionic liquids: a successful wedding. Macromol. Chem. Phys. 2015, 216(4), 359−368  doi: 10.1002/macp.v216.4

    29. [29]

      Chen, B. K.; Wu, T. Y.; Chang, Y. M.; Chen, A. F. Ductile polylactic acid prepared with ionic liquids. Chem. Eng. J. 2013, 215-216, 886−893  doi: 10.1016/j.cej.2012.11.078

    30. [30]

      Gardella, L.; Furfaro, D.; Galimberti, M.; Monticelli, O. On the development of facile approach based on the use of ionic liquids: preparation of PLLA (sc-PLA)/high surface area nano-graphite systems. Green Chem. 2015, 17(7), 4082−4088  doi: 10.1039/C5GC00964B

    31. [31]

      Cui, J.; Nie, F. M.; Yang, J. X.; Pan, L.; Ma, Z.; Li, Y. S. Novel imidazolium-Based poly(ionic liquid)s with different counter ions for self-healing. J. Mater. Chem. A 2017, 5, 25220−25229  doi: 10.1039/C7TA06793C

    32. [32]

      Le, H. H.; Das, A. Triggering the self-healing properties of modifed bromobutyl rubber by intrinsically electrical heating. Macromol. Mater. Eng. 2017, 302, 1600385  doi: 10.1002/mame.201600385

    33. [33]

      Das, A.; Sallat, A.; Böhme, F.; Suckow, M.; Basu, D.; Wießner, S.; Stöckelhuber, K. W.; Voit, B.; Heirich, G. Ionic modification turns commercial rubber into a self-healing material. ACS Appl. Mater. Interfaces 2015, 7(37), 20623−20630  doi: 10.1021/acsami.5b05041

    34. [34]

      Suckow, M.; Mordvinkin, A.; Roy, M.; Singha, N. K.; Heinrich, G.; Voit, B.; Saalwächter, K.; Böhme, F. Tuning the properties and self-healing behavior of ionically modified poly(isobutylene-co-isoprene) rubber. Macromolecules 2018, 51(2), 468−479  doi: 10.1021/acs.macromol.7b02287

    35. [35]

      Meng, Q. Q.; Wang, B.; Pan, L.; Li, Y. S.; Ma, Z. Synthesis and properties of isotactic polypropylene ionomers containing ammonium Ions. Acta Polymerica Sinica (in Chinese) 2017, 11, 1762−1772

    36. [36]

      Lee, M.; Choi, U. H.; Wi, S.; Slebodnick, C.; Colby, R. H.; Gibson, H. W. 1,2-Bis[N-(N′-alkylimidazolium)] ethane salts: a new class of organic ionic plastic crystals. J. Mater. Chem. 2011, 21(33), 12280−12287  doi: 10.1039/c1jm10995b

    37. [37]

      Dakin, J. M.; Shanmugam, K. V. S.; Twigg, C.; Whitney, R. A.; Parent, J. S. Isobutylene-rich macromonomers: dynamics and yields of peroxide-initiated crosslinking. Polym. Chem. 2015, 53(1), 123−132  doi: 10.1002/pola.27462

    38. [38]

      Parent, J. S.; Porter, A. M. J.; Kleczek, M. R.; Whitney, R. A. Imidazolium bromide derivatives of poly(isobutylene-co-isoprene): a new class of elastomeric ionomers. Polymer 2011, 52(24), 5410−5418  doi: 10.1016/j.polymer.2011.10.021

    39. [39]

      Kim, A.; Miller, K. M. Synthesis and thermal analysis of crosslinked imidazolium-containing polyester networks prepared by Michael addition polymerization. Polymer 2012, 53(25), 5666−5674  doi: 10.1016/j.polymer.2012.10.040

    40. [40]

      Ye, Y. S.; Sharick, S.; Davis, E. M.; Winey, K. I.; Elabd, Y. A. High hydroxide conductivity in polymerized ionic liquid block copolymers. ACS Macro Lett. 2013, 2(7), 575−580  doi: 10.1021/mz400210a

    41. [41]

      Nykaza, J. R.; Ye, Y. S.; Elabd, Y. A. Polymerized ionic liquid diblock copolymers with long alkyl side-chain length. Polymer 2014, 55(16), 3360−3369  doi: 10.1016/j.polymer.2014.04.003

    42. [42]

      Wu, J. R.; Huang, G. S.; Pan, Q. Y.; Zheng, J.; Zhu, Y. C.; Wang, B. An investigation on the molecular mobility through the glass transition of chlorinated butyl rubber. Polymer 2007, 48(26), 7653−7659  doi: 10.1016/j.polymer.2007.11.006

    43. [43]

      Mora-Barrantes, I.; Malmierica, M. A.; Valentin, J. L.; Rodriguez, A.; Ibarra, L. Effect of covalent cross-links on the network structure of thermo-reversible ionic elastomers. Soft Matter 2012, 8(19), 5201−5213  doi: 10.1039/c2sm06975j

    44. [44]

      Marin, N.; Favis, B. D. Co-continuous morphology development in partially miscible PMMA/PC blends. Polymer 2002, 43(17), 4723−4731  doi: 10.1016/S0032-3861(02)00280-X

    45. [45]

      Harrats, C.; Thomas, S. and Groeninckx, G. " Micro- and nanostructured multiphase polymer blends system”, CRC Press, 2006, p. 4-33.

    46. [46]

      Phetwarotai, W.; Tanrattanakul, V.; Phusunti, N. Synergistic effect of nucleation and compatibilization on the polylactide and poly(butylene adipate-co-terephthalate) blend films. Chinese J. Polym. Sci. 2016, 34(9), 1129−1140  doi: 10.1007/s10118-016-1834-0

    47. [47]

      Nagarajan, V. Overcoming the fundamental challenges in improving the impact strength and crystallinity of PLA biocomposites: influence of nucleating agent and mold temperature. ACS Appl. Mater. Interfaces 2015, 7(21), 11203−11214  doi: 10.1021/acsami.5b01145

    48. [48]

      Yu, F.; Huang, H. X. Simultaneously toughening and reinforcing poly(lactic acid)/thermoplastic polyurethane blend via enhancing interfacial adhesion by hydrophobic silica nanoparticles. Polym. Test. 2015, 45, 107−113  doi: 10.1016/j.polymertesting.2015.06.001

    49. [49]

      Zhang, K. Y.; Mohanty, A. K.; Misra, M. Fully biodegradable and biorenewable ternary blends from polylactide, poly(3-hydroxybutyrate-co-hydroxyvalerate) and poly(butylene succinate) with balanced properties. ACS Appl. Mater. Interfaces 2012, 4(6), 3091−3101  doi: 10.1021/am3004522

    50. [50]

      Zhang, K. Y.; Nagarajan, V.; Misra, M.; Mohanty, A. K. Super toughened renewable PLA reactive multiphase blends system: phase morphology and performance. ACS Appl. Mater. Interfaces 2014, 6(15), 12436−12448  doi: 10.1021/am502337u

  • 加载中
    1. [1]

      Weijian ZhangXianyu DengLiying WangJian WangXiuting GuoLianggui HuangXinyi WangJun WuLinjia Jiang . Poly(ferulic acid) nanocarrier enhances chemotherapy sensitivity of acute myeloid leukemia by selectively targeting inflammatory macrophages. Chinese Chemical Letters, 2024, 35(9): 109422-. doi: 10.1016/j.cclet.2023.109422

    2. [2]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    3. [3]

      Shuxin LiuJinjuan MaAiguo WangNan Zheng . Decomposable and sono-enzyme co-triggered poly(sonosensitizers) for precise and hypotoxic sonodynamic therapy. Chinese Chemical Letters, 2025, 36(4): 110032-. doi: 10.1016/j.cclet.2024.110032

    4. [4]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    5. [5]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    6. [6]

      Chong LiuLing LiJiahui GaoYanwei LiNazhen ZhangJing ZangCong LiuZhaopei GuoYanhui LiHuayu Tian . The study of antibacterial activity of cationic poly(β-amino ester) regulating by amphiphilic balance. Chinese Chemical Letters, 2025, 36(2): 110118-. doi: 10.1016/j.cclet.2024.110118

    7. [7]

      Di Wang Qing-Song Chen Yi-Ran Lin Yun-Xin Hou Wei Han Juan Yang Xin Li Zhen-Hai Wen . Tuning strategies and electrolyzer design for Bi-based nanomaterials towards efficient CO2 reduction to formic acid. Chinese Journal of Structural Chemistry, 2024, 43(8): 100346-100346. doi: 10.1016/j.cjsc.2024.100346

    8. [8]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    9. [9]

      Mengyuan LiXitong RenYanmei GaoMengyao MuShiping ZhuShufang TianMinghua Lu . Constructing bifunctional magnetic porous poly(divinylbenzene) polymer for high-efficient removal and sensitive detection of bisphenols. Chinese Chemical Letters, 2024, 35(12): 109699-. doi: 10.1016/j.cclet.2024.109699

    10. [10]

      Haibo YeQianyu LiJuan LiDidi LiZhimin Ao . Review on the abiotic degradation of biodegradable plastic poly(butylene adipate-terephthalate): Mechanisms and main factors of the degradation. Chinese Chemical Letters, 2025, 36(1): 109861-. doi: 10.1016/j.cclet.2024.109861

    11. [11]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    12. [12]

      Zhili LiQijun WoDongdong HuangDezhong ZhouLei GuoYeqing Mao . Improving gene transfection efficiency of highly branched poly(β-amino ester)s through the in-situ conversion of inactive terminal groups. Chinese Chemical Letters, 2024, 35(8): 109737-. doi: 10.1016/j.cclet.2024.109737

    13. [13]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    14. [14]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    15. [15]

      Fengyun LiZerong PeiShuting ChenGen liMengyang LiuLiqin DingJingbo LiuFeng Qiu . Multifunctional nano-herb based on tumor microenvironment for enhanced tumor therapy of gambogic acid. Chinese Chemical Letters, 2024, 35(5): 108752-. doi: 10.1016/j.cclet.2023.108752

    16. [16]

      Dongdong YANGJianhua XUEYuanyu YANGMeixia WUYujia BAIZongxuan WANGQi MA . Design and synthesis of two coordination polymers for the rapid detection of ciprofloxacin based on triphenylpolycarboxylic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2466-2474. doi: 10.11862/CJIC.20240266

    17. [17]

      Jimin HOUMengyang LIChunhua GONGShaozhuang ZHANGCaihong ZHANHao XUJingli XIE . Synthesis, structures, and properties of metal-organic frameworks based on bipyridyl ligands and isophthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 549-560. doi: 10.11862/CJIC.20240348

    18. [18]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    19. [19]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    20. [20]

      Yuxin WangZhengxuan SongYutao LiuYang ChenJinping LiLibo LiJia Yao . Methyl functionalization of trimesic acid in copper-based metal-organic framework for ammonia colorimetric sensing at high relative humidity. Chinese Chemical Letters, 2024, 35(6): 108779-. doi: 10.1016/j.cclet.2023.108779

Metrics
  • PDF Downloads(0)
  • Abstract views(898)
  • HTML views(38)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return