Citation: Jian Huang, Ling Shen, Hui Zou, Na Liu. Enantiomer-selective Living Polymerization of rac-Phenyl Isocyanide Using Chiral Palladium Catalyst[J]. Chinese Journal of Polymer Science, ;2018, 36(7): 799-804. doi: 10.1007/s10118-018-2136-5 shu

Enantiomer-selective Living Polymerization of rac-Phenyl Isocyanide Using Chiral Palladium Catalyst

  • Corresponding author: Na Liu, liuna@hfut.edu.cn
  • Received Date: 9 February 2018
    Accepted Date: 26 March 2018
    Available Online: 25 April 2018

  • We report the polymerization of phenyl isocyanides with the chiral palladium(II) initiating system. The resulting polymers with optically active properties were obtained by polymerization of the racemic isocyanide monomer (rac-1), and enantiomerically unbalanced polymerization of the monomer was found, providing substantial evidence for the enantiomer-selective polymerization of rac-1 mediated through chiral catalyst. A comparison between the enantiomerically pure monomers, 4-isocyanobenzoyl-L-alanine decyl ester (1s) and 4-isocyanobenzoyl-D-alanine decyl ester (1r), revealed a drastic discrepancy in the reactivity ratio of their homopolymerizations. It turned out that the monomer reactivity ratio of 1s was higher than that of 1r with chiral ligands. The results clearly demonstrated the inclination for incorporation of the 1s enantiomer during the polymerization process and thus resulted in the enantiomer-selective polymerization in this system. The effects of the catalyst chirality on the optically active properties of polymerization were investigated, and it was concluded that the formation of higher-ordered conformation with a handed helicity might be attributed to the chiral induction of chiral palladium(II) catalyst. Moreover, the polymers obtained through the enantiomer-selective polymerization of the enantiomerically pure monomer were with a significant improvement of the optical activity if the chirality of the monomer and the catalyst matched with each other.
  • 加载中
    1. [1]

      Okamoto, Y.; Suzuki, K.; Ohta, K.; Hatada, K.; Yuki, H. Optically active poly(triphenylmethyl methacrylate) with one-handed helical conformation. J. Am. Chem. Soc. 1979, 101(16), 4763-4765.  doi: 10.1021/ja00510a072

    2. [2]

      Miyake, G. M.; Mariott, W. R.; Chen, E. Y. X. Asymmetric coordination polymerization of acrylamides by enantiomeric metallocenium ester enolate catalysts. J. Am. Chem. Soc. 2007, 129(21), 6724-6725.  doi: 10.1021/ja072073p

    3. [3]

      Wang, R.; Li, X. F.; Bai, J. W.; Zhang, J.; Liu, A. H.; Wan, X. H. Chiroptical and thermotropic properties of helical styrenic polymers: effect of achiral group. Macromolecules 2014, 47(5), 1553-1562.  doi: 10.1021/ma500147z

    4. [4]

      Cui, J. X.; Zhang, J.; Wan, X. H. Unexpected stereomutation dependence on the chemical structure of helical vinyl glycopolymers. Chem. Commun. 2012, 48(36), 4341-4343.  doi: 10.1039/c2cc00036a

    5. [5]

      Zhu, Y. Y.; Yin, T. T.; Li, X. L.; Su, M.; Xue, Y. X.; Yu, Z. P.; Liu, N.; Yin, J.; Wu, Z. Q. Synthesis and chiroptical properties of helical polyallenes bearing chiral amide pendants. Macromolecules 2014, 47(20), 7021-7029.  doi: 10.1021/ma5019022

    6. [6]

      Wu, Z. Q.; Radcliffe, J. D.; Ono, R. J.; Chen, Z.; Li, Z. C.; Bielawski, C. W. Synthesis of conjugated diblock copolymers: two mechanistically distinct, sequential living polymerizations using a single catalyst. Polym. Chem. 2012, 3(4), 874-881.  doi: 10.1039/c2py00566b

    7. [7]

      Zhang, W. M.; Zhang, J.; Qiao, Z.; Yin, J. Functionally oriented tumor microenvironment responsive polymeric nanoassembly: engineering and applications. Chinese J. Polym. Sci. 2018, 36(3), 273-287.  doi: 10.1007/s10118-018-2035-9

    8. [8]

      Makiguchi, W.; Kobayashi, S.; Furusho, Y.; Yashima, E. Formation of a homo double helix of a conjugated polymer with carboxy groups and amplification of the macromolecular helicity by chiral amines sandwiched between the strands. Angew. Chem. Int. Ed. 2013, 52(20), 5275-5279.  doi: 10.1002/anie.201301005

    9. [9]

      Zhou, L.; Jiang, Z. Q.; Xu, N.; Liu, N.; Wu, Z. Q. Polythiophene-block-poly(phenyl isocyanide) copolymers: one-pot synthesis, properties and applications. Chinese J. Polym. Sci. 2017, 35(12), 1447-1456.  doi: 10.1007/s10118-017-2003-9

    10. [10]

      Zhou, L.; Shen, L.; Huang, J.; Liu, N.; Zhu, Y. Y.; Wu, Z. Q. Optically active helical polyisocyanides bearing chiral phosphine pendants: facile synthesis and application in enantioselective Rauhut-currier reaction. Chinese J. Polym. Sci. 2018, 36(2), 163-170.  doi: 10.1007/s10118-018-2044-8

    11. [11]

      Green, M. M.; Peterson, N. C.; Sato, T.; Teramoto, A.; Cook, R.; Lifson, S. A helical polymer with a cooperative response to chiral information. Science 1995, 268(5219), 1860-1866.  doi: 10.1126/science.268.5219.1860

    12. [12]

      Li, J.; Schuster, G. B.; Cheon, K. S.; Green, M. M.; Selinger, J. V. Switching a helical polymer between mirror images using circularly polarized light. J. Am. Chem. Soc. 2000, 122(11), 2603-2612.  doi: 10.1021/ja993290w

    13. [13]

      Maeda, K.; Wakasone, S.; Shimomura, K.; Ikai, T.; Kanoh, S. Helical polymer brushes with a preferred-handed helix-sense triggered by a terminal optically active group in the pendant. Chem. Commun. 2012, 48(27), 3342-3344.  doi: 10.1039/c2cc00024e

    14. [14]

      Sakai, N.; Satoh, T.; Kakuchi, T. Rod-like amphiphile of diblock polyisocyanate leading to cylindrical micelle and spherical vesicle in water. Macromolecules 2014, 47(5), 1699-1704.  doi: 10.1021/ma500097t

    15. [15]

      Reuther, J. F.; DeSousa, J. D.; Novak, B. M. Direct probing of regioregularity for polycarbodiimide systems via 15N NMR analysis. Macromolecules 2012, 45(19), 7719-7728.  doi: 10.1021/ma301448b

    16. [16]

      Reuther, J. F.; Novak, B. M. Evidence of entropy-driven bistability through 15N NMR analysis of a temperature- and solvent-induced, chiroptical switching polycarbodiimide. J. Am. Chem. Soc. 2013, 135(51), 19292-19303.  doi: 10.1021/ja4098803

    17. [17]

      Budhathoki-Uprety, J.; Jena, P. V.; Roxbury, D.; Heller, D. A. Helical polycarbodiimide cloaking of carbon nanotubes enables inter-nanotube exciton energy transfer modulation. J. Am. Chem. Soc. 2014, 136(44), 15545-15550.  doi: 10.1021/ja505529n

    18. [18]

      Reuther, J. F.; Siriwardane, D. A.; Kulikov, O. V.; Batchelor, B. L.; Campos, R.; Novak, B. M. Facile synthesis of rod-coil block copolymers with chiral, helical polycarbodiimide segments via postpolymerization CuAAC " click” coupling of functional end groups. Macromolecules 2015, 48(10), 3207-3216.  doi: 10.1021/acs.macromol.5b00453

    19. [19]

      Liu, X.; Song, C.; Luo, X. F.; Yang, W. T.; Deng, J. P. " Sergeants and soldiers rule” in helical substitutedacetylene copolymer emulsions. Chinese J. Polym. Sci. 2013, 31(1), 179-186.  doi: 10.1007/s10118-013-1189-8

    20. [20]

      Akagi, K. Helical polyacetylene: asymmetric polymerization in a chiral liquid-crystal field. Chem. Rev. 2009, 109(11), 5354-5401.  doi: 10.1021/cr900198k

    21. [21]

      Matsushita, S.; Kyotani, M.; Akagi, K. Hierarchically controlled helical graphite films prepared from iodine-doped helical polyacetylene films using morphology-retaining carbonization. J. Am. Chem. Soc. 2011, 133(44), 17977-17992.  doi: 10.1021/ja2082922

    22. [22]

      Sakai, R.; Sakai, N.; Satoh, T.; Li, W.; Zhang, A. F.; Kakuchi, T. Strict size specificity in colorimetric anion detection based on poly(phenylacetylene) receptor bearing second generation lysine dendrons. Macromolecules 2011, 44(11), 4249-4257.  doi: 10.1021/ma200710r

    23. [23]

      Li, S.; Liu, K.; Kuang, G. C.; Masuda, T.; Zhang, A. F. Thermoresponsive helical poly(phenylacetylene)s. Macromolecules 2014, 47(10), 3288-3296.  doi: 10.1021/ma5003529

    24. [24]

      Song, C.; Liu, X.; Liu, D.; Ren, C. L.; Yang, W. T.; Deng, J. P. Optically active particles of chiral polymers. Macromol. Rapid Commun. 2013, 34(18), 1426-1445.  doi: 10.1002/marc.v34.18

    25. [25]

      Rodríguez, R.; Quiñoá, E.; Riguera, R.; Freire, F. Architecture of chiral poly(phenylacetylene)s: from compressed/highly dynamic to stretched/quasi-static helices. J. Am. Chem. Soc. 2016, 138(30), 9620-9628.  doi: 10.1021/jacs.6b04834

    26. [26]

      Zhao, Z. Y.; Wang, S.; Ye, X. C.; Zhang, J.; Wan, X. H. Planar-to-axial chirality transfer in the polymerization of phenylacetylenes. ACS Macro Lett. 2017, 6(3), 205-209.  doi: 10.1021/acsmacrolett.6b00901

    27. [27]

      Wang, S.; Chen, J. X.; Feng, X. Y.; Shi, G.; Zhang, J.; Wan, X. H. Conformation shift switches the chiral amplification of helical copoly(phenylacetylene)s from abnormal to normal " sergeants- and-soldiers” effect. Macromolecules 2017, 50(12), 4610-4615.  doi: 10.1021/acs.macromol.7b01028

    28. [28]

      Yoshio, O.; Koji, O.; Heimei, Y. Highly asymmetric selective polymerization of (RS)-α-methylbenzyl methacrylate by grignard reagent-(-)-sparteine catalyst systems. Chem. Lett. 1977, 6(6), 617-620.  doi: 10.1246/cl.1977.617

    29. [29]

      Okamoto, Y.; Urakawa, K.; Ohta, K.; Yuki, H. Asymmetric- selective polymerization of (RS)-α-methylbenzyl methacrylate. Macromolecules 1978, 11(4), 719-723.  doi: 10.1021/ma60064a020

    30. [30]

      Okamoto, Y.; Suzuki, K.; Kitayama, T.; Yuki, H.; Kageyama, H.; Miki, K.; Tanaka, N.; Kasai, N. Kinetic resolution of racemic alpha-methylbenzyl methacrylate: asymmetric selective polymeri- zation catalyzed by Grignard reagent-(-)-sparteine derivative complexes. J. Am. Chem. Soc. 1982, 104(17), 4618-4624.  doi: 10.1021/ja00381a019

    31. [31]

      Spassky, N.; Wisniewski, M.; Pluta, C.; Le Borgne, A. Highly stereoelective polymerization of rac-(D,L)-lactide with a chiral schiff's base/aluminium alkoxide initiator. Macromol. Chem. Phys. 1996, 197(9), 2627-2637.  doi: 10.1002/macp.1996.021970902

    32. [32]

      Boucard, V.; Dumas, P.; Sigwalt, P.; Guérin, P.; Fadel, A. Living stereospecific and enantioasymmetric polymerization of methylthiirane initiated by various bis(alkyl-S-cysteinato) cadmium. Eur. Polym. J. 1996, 32(4), 481-485.  doi: 10.1016/0014-3057(95)00155-7

    33. [33]

      Imai, T.; Hayakawa, K.; Satoh, T.; Kaga, H.; Kakuchi, T. Enantiomer-selective polymerization of (RS)-(phenoxymethyl) thiirane with diethylzinc/L-amino acid. J. Polym. Sci., Part A: Polym. Chem. 2002, 40(20), 3443-3448.  doi: 10.1002/(ISSN)1099-0518

    34. [34]

      Tsuji, M.; Aoki, T.; Sakai, R.; Satoh, T.; Kaga, H.; Kakuchi, T. Enantiomer-selective radical cyclopolymerization of rac-2,4- pentanediyl dimethacrylate using a ruthenium-mediated chiral atom transfer radical polymerization initiating system. J. Polym. Sci., Part A: Polym. Chem. 2004, 42(18), 4563-4569.  doi: 10.1002/(ISSN)1099-0518

    35. [35]

      Hirahata, W.; Thomas, R. M.; Lobkovsky, E. B.; Coates, G. W. Enantioselective polymerization of epoxides: a highly active and selective catalyst for the preparation of stereoregular polyethers and enantiopure epoxides. J. Am. Chem. Soc. 2008, 130(52), 17658-17659.  doi: 10.1021/ja807709j

    36. [36]

      Thomas, R. M.; Widger, P. C. B.; Ahmed, S. M.; Jeske, R. C.; Hirahata, W.; Lobkovsky, E. B.; Coates, G. W. Enantioselective epoxide polymerization using a bimetallic cobalt catalyst. J. Am. Chem. Soc. 2010, 132(46), 16520-16525.  doi: 10.1021/ja1058422

    37. [37]

      Zhu, H.; Luo, S. Z.; Wu, Z. Q. Living and enantiomer-selective polymerization of allene initiated by Ni complex containing chiral phosphine. Chin. Chem. Lett. 2018, DOI: 10.1016/j.cclet.2018.03.002.  doi: 10.1016/j.cclet.2018.03.002

    38. [38]

      Makiguchi, K.; Yamanaka, T.; Kakuchi, T.; Terada, M.; Satoh, T. Binaphthol-derived phosphoric acids as efficient chiral organocatalysts for the enantiomer-selective polymerization of rac-lactide. Chem. Commun. 2014, 50(22), 2883-2885.  doi: 10.1039/C4CC00215F

    39. [39]

      Li, H.; Ai, B. R.; Hong, M. Stereoselective ring-opening poly- merization of rac-lactide by bulky chiral and achiral N-hetero- cyclic carbenes. Chinese J. Polym. Sci. 2017, 36(2), 231-236.

    40. [40]

      Zhao, W.; Li, C. Y.; Wu, C. J.; Liu, X. L.; Mou, Z. H.; Yao, C. G.; Cui, D. M. Synthesis of ultraviolet absorption polylactide via immortal polymerization of rac-lactide initiated by a Salan- yttrium catalyst. Chinese J. Polym. Sci. 2017, 36(2), 202-206.

    41. [41]

      Zhong, Z. Y.; Dijkstra, P. J.; Feijen, J. Controlled and stereo- selective polymerization of lactide: kinetics, selectivity, and micro- structures. J. Am. Chem. Soc. 2003, 125(37), 11291-11298.  doi: 10.1021/ja0347585

    42. [42]

      Ahmed, S. M.; Poater, A.; Childers, M. I.; Widger, P. C. B.; LaPointe, A. M.; Lobkovsky, E. B.; Coates, G. W.; Cavallo, L. Enantioselective polymerization of epoxides using biaryl-linked bimetallic cobalt catalysts: a mechanistic study. J. Am. Chem. Soc. 2013, 135(50), 18901-18911.  doi: 10.1021/ja409521z

    43. [43]

      Xue, Y. X.; Zhu, Y. Y.; Gao, L. M.; He, X. Y.; Liu, N.; Zhang, W. Y.; Yin, J.; Ding, Y. S.; Zhou, H. P.; Wu, Z. Q. Air-stable (phenylbuta-1,3-diynyl)palladium(II) complexes: highly active initiators for living polymerization of isocyanides. J. Am. Chem. Soc. 2014, 136(12), 4706-4713.  doi: 10.1021/ja5004747

    44. [44]

      Chen, J.-L.; Yang, L.; Wang, Q.; Jiang, Z. Q.; Liu, N.; Yin, J.; Ding, Y. S.; Wu, Z. Q. Helix-sense-selective and enantiomer- selective living polymerization of phenyl isocyanide induced by reusable chiral lactide using achiral palladium initiator. Macromolecules 2015, 48(21), 7737-7746.  doi: 10.1021/acs.macromol.5b02124

    45. [45]

      Zhou, W.; Su, X.; Tao, M. N.; Zhu, C. Z.; Zhao, Q. J.; Zhang, J. L. Chiral sulfinamide bisphosphine catalysts: design, synthesis, and application in highly enantioselective intermolecular cross- rauhut-currier reactions. Angew. Chem. Int. Ed. 2015, 54(49), 14853-14857.  doi: 10.1002/anie.201508108

    46. [46]

      Zhang, Z. M.; Chen, P.; Li, W. B.; Niu, Y. F.; Zhao, X. L.; Zhang, J. L. A new type of chiral sulfinamide monophosphine ligands: stereodivergent synthesis and application in enantio- selective gold(I)-catalyzed cycloaddition reactions. Angew. Chem. Int. Ed. 2014, 53(17), 4350-4354.  doi: 10.1002/anie.201401067

    47. [47]

      Kajitani, T.; Okoshi, K.; Sakurai, S. I.; Kumaki, J.; Yashima, E. Helix-sense controlled polymerization of a single phenyl isocyanide enantiomer leading to diastereomeric helical polyisocyanides with opposite helix-sense and cholesteric liquid crystals with opposite twist-sense. J. Am. Chem. Soc. 2006, 128(3), 708-709.  doi: 10.1021/ja0576536

    48. [48]

      Okamoto, Y.; Urakawa, K.; Yuki, H. Asymmetric selective polymerization of racemic methacrylates with the cyclo- hexylmagnesium bromide-(-)-sparteine system. J. Polym. Sci., Polym. Chem. Ed. 1981, 19(6), 1385-1395.  doi: 10.1002/pol.1981.170190611

    49. [49]

      Horeau, A. Interactions between enantiomers in solution; effect on the rotatory power. Optical purity and enantiomeric purity. Tetrahedron Lett. 1969, 36, 3121-3124.

  • 加载中
    1. [1]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    4. [4]

      Xue ZhaoMengshan ChenDan WangHaoran ZhangGuangzhi HuYingtang Zhou . Ultrafine nano-copper derived from dopamine polymerization & synchronous adsorption achieve electrochemical purification of nitrate to ammonia in complex water environments. Chinese Chemical Letters, 2024, 35(8): 109327-. doi: 10.1016/j.cclet.2023.109327

    5. [5]

      Fei YinErli YangXue GeQian SunFan MoGuoqiu WuYanfei Shen . Coupling WO3−x dots-encapsulated metal-organic frameworks and template-free branched polymerization for dual signal-amplified electrochemiluminescence biosensing. Chinese Chemical Letters, 2024, 35(4): 108753-. doi: 10.1016/j.cclet.2023.108753

    6. [6]

      Wenyi MeiLijuan XieXiaodong ZhangCunjian ShiFengzhi WangQiqi FuZhenjiang ZhaoHonglin LiYufang XuZhuo Chen . Design, synthesis and biological evaluation of fluorescent derivatives of ursolic acid in living cells. Chinese Chemical Letters, 2024, 35(5): 108825-. doi: 10.1016/j.cclet.2023.108825

    7. [7]

      Tao YuVadim A. SoloshonokZhekai XiaoHong LiuJiang Wang . Probing the dynamic thermodynamic resolution and biological activity of Cu(Ⅱ) and Pd(Ⅱ) complexes with Schiff base ligand derived from proline. Chinese Chemical Letters, 2024, 35(4): 108901-. doi: 10.1016/j.cclet.2023.108901

    8. [8]

      Dan-Ying XingXiao-Dan ZhaoChuan-Shu HeBo Lai . Kinetic study and DFT calculation on the tetracycline abatement by peracetic acid. Chinese Chemical Letters, 2024, 35(9): 109436-. doi: 10.1016/j.cclet.2023.109436

    9. [9]

      Yudi ChengXiao WangJiao ChenZihan ZhangJiadong OuMengyao SheFulin ChenJianli Li . A near-infrared fluorescent probe for visualizing transformation pathway of Cys/Hcy and H2S and its applications in living system. Chinese Chemical Letters, 2024, 35(5): 109156-. doi: 10.1016/j.cclet.2023.109156

    10. [10]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    11. [11]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    12. [12]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    13. [13]

      Zhiwen Li Jingjing Zhang Gao Li . Dynamic assembly of chiral golden knots. Chinese Journal of Structural Chemistry, 2024, 43(7): 100300-100300. doi: 10.1016/j.cjsc.2024.100300

    14. [14]

      Long JinJian HanDongmei FangMin WangJian Liao . Pd-catalyzed asymmetric carbonyl alkynylation: Synthesis of axial chiral ynones. Chinese Chemical Letters, 2024, 35(6): 109212-. doi: 10.1016/j.cclet.2023.109212

    15. [15]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    16. [16]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    17. [17]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    18. [18]

      Kezhen QiShu-yuan LiuRuchun Li . Selective dissolution for stabilizing solid electrolyte interphase. Chinese Chemical Letters, 2024, 35(5): 109460-. doi: 10.1016/j.cclet.2023.109460

    19. [19]

      Cheng-Da ZhaoHuan YaoShi-Yao LiFangfang DuLi-Li WangLiu-Pan Yang . Amide naphthotubes: Biomimetic macrocycles for selective molecular recognition. Chinese Chemical Letters, 2024, 35(4): 108879-. doi: 10.1016/j.cclet.2023.108879

    20. [20]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

Metrics
  • PDF Downloads(0)
  • Abstract views(626)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return