Citation: Chen-Yang Hu, Ran-Long Duan, Jing-Wei Yang, Shu-Jun Dong, Zhi-Qiang Sun, Xuan Pang, Xian-Hong Wang, Xue-Si Chen. Enolic Schiff Base Zinc Amide Complexes: Highly Active Catalysts for Ring-Opening Polymerization of Lactide and ε-Caprolactone[J]. Chinese Journal of Polymer Science, ;2018, 36(10): 1123-1128. doi: 10.1007/s10118-018-2129-4 shu

Enolic Schiff Base Zinc Amide Complexes: Highly Active Catalysts for Ring-Opening Polymerization of Lactide and ε-Caprolactone

  • A series of zinc silylamido complexes based upon NNO tridentate enolic Schiff base framework have been synthesized and characterized. These complexes were tested for the ring opening polymerization of lactide and ε-caprolactone, exhibiting notably high activity at ambient temperature. The influence of imine bridge length and substituents of diketone over the course of polymerization was investigated in details. Remarkably, 4a was confirmed to be a rare example of exceedingly active and robust zinc catalysts, achieving major transformation of lactide under extremely low loading (0.025 mol%) within 18 min. The influence of various monomers as well as the polymerization mechanism have also been discussed.
  • 加载中
    1. [1]

      Pang, X.; Zhuang, X.; Tang, Z.; Chen, X. Polylactic acid (PLA): research, development and industrialization. Biotechnol. J. 2010, 5, 1125−1136  doi: 10.1002/biot.v5.11

    2. [2]

      Auras, R. A.; Lim, L. T.; Selke, S. E.; Tsuji, H. Poly(lactic acid): synthesis, structures, properties, processing, and applications. John Wiley & Sons (2011).

    3. [3]

      Zhang, S. Y.; Chen, Z. F.; Wu, F.; Zhu, X. Y.; Liu, Z. Y.; Feng, J. M.; Yang, M. B. Studies on the effects of four-armed poly(L-lactide) on the crystallization behavior of four-armed poly(L-lactide)/linear poly(L-lactide) blends. Acta Polymerica Sinica (in Chinese) 2016, (5), 679−684

    4. [4]

      Chen, Q.; Du, J.; Xie, H.; Zhao, Z.; Zheng, Q. Studies on preparation and properties of bio-based polymeric monomers and their bio-based polymers. Acta Polymerica Sinica (in Chinese) 2016, (10), 1330−1358

    5. [5]

      Yang, J.; Sun, Z.; Duan, R.; Li, L.; Pang, X.; Chen, X. Copolymer of lactide and ε-caprolactone catalyzed by bimetallic Schiff base aluminum complexes. Sci. China Chem. 2016, 59, 1384−1389  doi: 10.1007/s11426-016-0118-9

    6. [6]

      Thomas, C. M. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem. Soc. Rev. 2010, 39, 165−173  doi: 10.1039/B810065A

    7. [7]

      Stanford, M. J.; Dove, A. P. Stereocontrolled ring-opening polymerisation of lactide. Chem. Soc. Rev. 2010, 39, 486−494  doi: 10.1039/B815104K

    8. [8]

      Xu, T. Q.; Yang, G. W.; Liu, C.; Lu, X. B. Highly robust yttrium bis(phenolate) ether catalysts for excellent isoselective ring-opening polymerization of racemic lactide. Macromolecules 2017, 50, 515−522  doi: 10.1021/acs.macromol.6b02439

    9. [9]

      Guillaume, S. M.; Kirillov, E.; Sarazin, Y.; Carpentier, J. F. Beyond stereoselectivity, switchable catalysis: some of the last Frontier challenges in ring-opening polymerization of cyclic esters. Chem. Eur. J. 2015, 21, 7988−8003  doi: 10.1002/chem.201500613

    10. [10]

      Cozzi, P. G. Metal-Salen Schiff base complexes in catalysis: practical aspects. Chem. Soc. Rev. 2004, 33, 410−421  doi: 10.1039/B307853C

    11. [11]

      Chisholm, M. H.; Gallucci, J. C.; Zhen, H.; Huffman, J. C. Three-coordinate zinc amide and phenoxide complexes supported by a bulky Schiff base ligand. Inorg. Chem. 2001, 40, 5051−5054  doi: 10.1021/ic010560e

    12. [12]

      Chen, H. Y.; Tang, H. Y.; Lin, C. C. Ring-opening polymerization of lactides initiated by zinc alkoxides derived from NNO-tridentate ligands. Macromolecules 2006, 39, 3745−3752  doi: 10.1021/ma060471r

    13. [13]

      Pang, X.; Chen, X.; Zhuang, X.; Jing, X. Crown-like macrocycle zinc complex derived from β-diketone ligand for the polymerization of rac-lactide. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 643−649  doi: 10.1002/(ISSN)1099-0518

    14. [14]

      Baran, J.; Duda, A.; Kowalski, A.; Szymanski, R.; Penczek, S. Intermolecular chain transfer to polymer with chain scission: general treatment and determination of kp/ktr in L,L-lactide polymerization. Macromol. Rapid Commun. 1997, 18, 325−333  doi: 10.1002/marc.1997.030180409

    15. [15]

      Save, M.; Schappacher, M.; Soum, A. Controlled ring-opening polymerization of lactones and lactides initiated by lanthanum isopropoxide, 1. general aspects and kinetics. 3.0.CO;2-O">Macromol. Chem. Phys. 2002, 203, 889−899  doi: 10.1002/1521-3935(20020401)203:5/6<889::AID-MACP889>3.0.CO;2-O

    16. [16]

      Gulli, S.; Daran, J. C.; Poli, R. Synthesis and structure of four-coordinate copper(ii) complexes stabilized by β-Ketiminato ligands and application in the reverse atom-transfer radical polymerization of styrene. Eur. J. Inorg. Chem. 2011, 10, 1666−1672

    17. [17]

      Tang, H. Y.; Chen, H. Y.; Huang, J. H.; Lin, C. C. Synthesis and structural characterization of magnesium ketiminate complexes: efficient initiators for the ring-opening polymerization of L-lactide. Macromolecules 2007, 40, 8855−8860  doi: 10.1021/ma071540k

    18. [18]

      Shit, S.; Sen, S.; Mitra, S.; Hughes, D. L. Syntheses, characterization and crystal structures of two square-planar Ni(II) complexes with unsymmetrical tridentate Schiff base ligands and monodentate pseudohalides. Transition Met. Chem. 2009, 34, 269−274  doi: 10.1007/s11243-009-9189-9

    19. [19]

      Bochmann, M.; Bwembya, G.; Webb, K. J.; Malik, M. A.; Walsh, J. R.; O'Brien, P. Arene chalcogenolato complexes of zinc and cadmium, inorganic syntheses. John Wiley & Sons, Inc. 1997, 19–24.

    20. [20]

      Pang, X.; Du, H.; Chen, X.; Wang, X.; Jing, X. Enolic Schiff base aluminum complexes and their catalytic stereoselective polymerization of racemic lactide. Chem. Eur. J. 2008, 14, 3126−3136  doi: 10.1002/(ISSN)1521-3765

    21. [21]

      Scheiper, C.; Dittrich, D.; Wölper, C.; Bläser, D.; Roll, J.; Schulz, S. Synthesis, structure, and catalytic activity of tridentate, base-functionalized β-Ketiminate zinc complexes in ring-opening polymerization of lactide. Eur. J. Inorg. Chem. 2014, 2014, 2230−2240  doi: 10.1002/ejic.201301462

    22. [22]

      Hong, M.; Chen, E. Y. Completely recyclable biopolymers with linear and cyclic topologies via ring-opening polymerization of γ-butyrolactone. Nat. Chem. 2016, 8, 42−49  doi: 10.1038/nchem.2391

    23. [23]

      Huang, M.; Pan, C.; Ma, H. Ring-opening polymerization of rac-lactide and α-methyltrimethylene carbonate catalyzed by magnesium and zinc complexes derived from binaphthyl-based iminophenolate ligands. Dalton Trans. 2015, 44, 12420−12431  doi: 10.1039/C5DT00158G

    24. [24]

      Wang, H.; Yang, Y.; Ma, H. Stereoselectivity Switch between zinc and magnesium initiators in the polymerization of rac-lactide: different coordination chemistry, different stereocontrol mechanisms. Macromolecules 2014, 47, 7750−7764  doi: 10.1021/ma501896r

  • 加载中
    1. [1]

      Yue SunLiming YangYaohang ChengGuanghui AnGuangming Li . Pd(I)-catalyzed ring-opening arylation of cyclopropyl-α-aminoamides: Access to α-ketoamide peptidomimetics. Chinese Chemical Letters, 2024, 35(6): 109250-. doi: 10.1016/j.cclet.2023.109250

    2. [2]

      Rong-Nan YiWei-Min He . Visible light/copper catalysis enabled radial type ring-opening of sulfonium salts. Chinese Chemical Letters, 2025, 36(4): 110787-. doi: 10.1016/j.cclet.2024.110787

    3. [3]

      Qinghong ZhangQiao ZhaoXiaodi WuLi WangKairui ShenYuchen HuaCheng GaoYu ZhangMei PengKai Zhao . Visible-light-induced ring-opening cross-coupling of cycloalcohols with vinylazaarenes and enones via β-C-C scission enabled by proton-coupled electron transfer. Chinese Chemical Letters, 2025, 36(2): 110167-. doi: 10.1016/j.cclet.2024.110167

    4. [4]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    5. [5]

      Jiao WangShuang-Yan LangZhen-Zhen ShenGui-Xian LiuJian-Xin TianYuan LiRui-Zhi LiuRui WenIn situ imaging of the interfacial processes manipulated by salt concentration on zinc anodes in zinc metal batteries. Chinese Chemical Letters, 2025, 36(4): 109815-. doi: 10.1016/j.cclet.2024.109815

    6. [6]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    7. [7]

      Yunyu ZhaoChuntao YangYingjian Yu . A review on covalent organic frameworks for rechargeable zinc-ion batteries. Chinese Chemical Letters, 2024, 35(7): 108865-. doi: 10.1016/j.cclet.2023.108865

    8. [8]

      Wenfeng ShaoChuanlin LiChenggang WangGuangsen DuShunshun ZhaoGuangmeng QuYupeng XingTianshuo GuoHongfei LiXijin Xu . Stabilization of zinc anode by trace organic corrosion inhibitors for long lifespan. Chinese Chemical Letters, 2025, 36(3): 109531-. doi: 10.1016/j.cclet.2024.109531

    9. [9]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    10. [10]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    11. [11]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    12. [12]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    13. [13]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    14. [14]

      Jiayu BaiSongjie HuLirong FengXinhui JinDong WangKai ZhangXiaohui Guo . Manganese vanadium oxide composite as a cathode for high-performance aqueous zinc-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109326-. doi: 10.1016/j.cclet.2023.109326

    15. [15]

      Ningning ZhaoYuyan LiangWenjie HuoXinyan ZhuZhangxing HeZekun ZhangYoutuo ZhangXianwen WuLei DaiJing ZhuLing WangQiaobao Zhang . Separator functionalization enables high-performance zinc anode via ion-migration regulation and interfacial engineering. Chinese Chemical Letters, 2024, 35(9): 109332-. doi: 10.1016/j.cclet.2023.109332

    16. [16]

      Shaojie Ding Henan Wang Xiaojing Dai Yuru Lv Xinxin Niu Ruilian Yin Fangfang Wu Wenhui Shi Wenxian Liu Xiehong Cao . Mn-modulated Co–N–C oxygen electrocatalysts for robust and temperature-adaptative zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100302-100302. doi: 10.1016/j.cjsc.2024.100302

    17. [17]

      Xiaoxing JiXiaojuan LiChenggang WangGang ZhaoHongxia BuXijin Xu . NixB/rGO as the cathode for high-performance aqueous alkaline zinc-based battery. Chinese Chemical Letters, 2024, 35(10): 109388-. doi: 10.1016/j.cclet.2023.109388

    18. [18]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    19. [19]

      Lingjiang KouYong WangJiajia SongTaotao AiWenhu LiMohammad Yeganeh GhotbiPanya WattanapaphawongKoji Kajiyoshi . Mini review: Strategies for enhancing stability of high-voltage cathode materials in aqueous zinc-ion batteries. Chinese Chemical Letters, 2025, 36(1): 110368-. doi: 10.1016/j.cclet.2024.110368

    20. [20]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

Metrics
  • PDF Downloads(0)
  • Abstract views(1150)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return