Citation: Ke Tian, Ting-Ting Zhu, Ping Lan, Zheng-Chen Wu, Wei Hu, Fei-Fei Xie, Lei Li. Massive Preparation of Coumarone-indene Resin-based Hyper-crosslinked Polymers for Gas Adsorption[J]. Chinese Journal of Polymer Science, ;2018, 36(10): 1168-1174. doi: 10.1007/s10118-018-2127-6 shu

Massive Preparation of Coumarone-indene Resin-based Hyper-crosslinked Polymers for Gas Adsorption

  • Hyper-crosslinked polymers (HCPs) are promising materials for gas capture and storage because of their low cost and easy preparation. In this work, we report the massive preparation of coumarone-indene resin-based hyper-crosslinked polymers via one-step Friedel-Crafts alkylation. Low-cost coumarone-indene resin serves as the new building block and chloroform is employed as both solvent and external crosslinker. A maximum surface area of 966 m2·g−1 is achieved, which is comparable with that of previously-reported coal tar-based porous organic polymers. Most importantly, a large number of heteroatoms including inherent oxygen atoms and introduced chlorine atoms in obtianed HCPs further enhance the interaction between specific sorbate molecule and adsorbent. Therefore, optimal structural and chemical property endow the new coumarone-indene resin-based HCPs with decent gas storage capacity (14.60 wt% at 273 K and 0.1 MPa for CO2; 1.18 wt% at 77.3 K and 0.1 MPa for H2). These results demonstrate that new HCPs are potential candidates for applications in CO2 and H2 capture.
  • 加载中
    1. [1]

      Xu, F.; Tang, Z.; Huang, S.; Chen, L.; Liang, Y.; Mai, W.; Zhong, H.; Fu, R.; Wu, D. Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 2015, 6, 7221  doi: 10.1038/ncomms8221

    2. [2]

      Gu, C.; Huang, N.; Gao, J.; Xu, F.; Xu, Y.; Jiang, D. Controlled synthesis of conjugated microporous polymer films: versatile platforms for highly sensitive and label- free chemo- and biosensing. Angew. Chem. Int. Ed. 2014, 53(19), 4850−4855  doi: 10.1002/anie.201402141

    3. [3]

      Gu, C.; Chen, Y.; Zhang, Z.; Xue, S.; Sun, S.; Zhang, K.; Zhong, C.; Zhang, H.; Pan, Y.; Lv, Y.; Yang, Y.; Li, F.; Zhang, S.; Huang, F.; Ma, Y. Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics. Adv. Mater. 2013, 25(25), 3443−3448  doi: 10.1002/adma.v25.25

    4. [4]

      Yuan, S.; Dorney, B.; White, D.; Kirklin, S.; Zapol, P.; Yu, L.; Liu, D. J. Microporous polyphenylenes with tunable pore size for hydrogen storage. Chem. Commun. 2010, 46(25), 4547−4549  doi: 10.1039/c0cc00235f

    5. [5]

      Bezzu, C. G.; Carta, M.; Tonkins, A.; Jansen, J. C.; Bernardo, P.; Bazzarelli, F.; McKeown, N. B. A spirobifluorene-based polymer of intrinsic microporosity with improved performance for gas separation. Adv. Mater. 2012, 24(44), 5930  doi: 10.1002/adma.v24.44

    6. [6]

      McKeown, N. B.; Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 2006, 35(8), 675−683  doi: 10.1039/b600349d

    7. [7]

      Jiang, J. X.; Su, F.; Trewin, A.; Wood, C. D.; Campbell, N. L.; Niu, H.; Dickinson, C.; Ganin, A. Y.; Rosseinsky, M. J.; Khimyak, Y. Z.; Cooper, A. I. Conjugated microporous poly(aryleneethynylene) networks. Angew. Chem. Int. Ed. 2007, 46(45), 8574−8578  doi: 10.1002/anie.200701595

    8. [8]

      Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 2013, 42(2), 548−568  doi: 10.1039/C2CS35072F

    9. [9]

      Li, B. Y.; Gong, R. N.; Wang, W.; Huang, X.; Zhang, W.; Li, H. M.; Hu, C. X.; Tan, B. E. A new strategy to microporous polymers: knitting rigid aromatic building blocks by external cross-linker. Macromolecules 2011, 44(8), 2410−2414  doi: 10.1021/ma200630s

    10. [10]

      Ren, S. J.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Porous, Fluorescent, Covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis. Adv. Mater. 2012, 24(17), 2357−2361  doi: 10.1002/adma.201200751

    11. [11]

      Tan, L.; Tan, B. Hypercrosslinked porous polymer materials: design, synthesis, and applications. Chem. Soc. Rev. 2017, 46(11), 3322−3356  doi: 10.1039/C6CS00851H

    12. [12]

      Li, L. N.; Ren, H.; Yuan, Y.; Yu, G. L.; Zhu, G. S. Construction and adsorption properties of porous aromatic frameworks via AlCl3-triggered coupling polymerization. J. Mater. Chem. A 2014, 2(29), 11091−11098  doi: 10.1039/C4TA01252F

    13. [13]

      Xu, Y. H.; Jin, S. B.; Xu, H.; Nagai, A.; Jiang, D. L. Conjugated microporous polymers: design, synthesis and application. Chem. Soc. Rev. 2013, 42(20), 8012−8031  doi: 10.1039/c3cs60160a

    14. [14]

      Ghanem, B. S.; Msayib, K. J.; McKeown, N. B.; Harris, K. D. M.; Pan, Z.; Budd, P. M.; Butler, A.; Selbie, J.; Book, D.; Walton, A. A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. Chem. Commun. 2007, (1), 67−69  doi: 10.1039/B614214A

    15. [15]

      Wang, S. L.; Tan, L. X.; Zhang, C. X.; Hussain, I.; Tan, B. E. Novel POSS-based organic-inorganic hybrid porous materials by low cost strategies. J. Mater. Chem. A 2015, 3(12), 6542−6548  doi: 10.1039/C4TA06963C

    16. [16]

      Tian, Z. H.; Huang, J. J.; Zhang, Z. L.; Shao, G. L.; Liu, A.; Yuan, S. G. Organic-inorganic hybrid microporous polymers based on octaphenylcyclotetrasiloxane: synthesis, carbonization and adsorption for CO2. Microporous Mesoporous Mater. 2016, 234, 130−136  doi: 10.1016/j.micromeso.2016.06.038

    17. [17]

      Zhu, J. H.; Chen, Q.; Sui, Z. Y.; Pan, L.; Yu, J. G.; Han, B. H. Preparation and adsorption performance of cross-linked porous polycarbazoles. J. Mater. Chem. A 2014, 2(38), 16181−16189  doi: 10.1039/C4TA01537A

    18. [18]

      Msayib, K. J.; McKeown, N. B. Inexpensive polyphenylene network polymers with enhanced microporosity. J. Mater. Chem. A 2016, 4(26), 10110−10113  doi: 10.1039/C6TA03257E

    19. [19]

      Meng, Q. B.; Weber, J. Lignin-based microporous materials as selective adsorbents for carbon dioxide separation. ChemSusChem 2014, 7(12), 3312−3318  doi: 10.1002/cssc.v7.12

    20. [20]

      Modak, A.; Maegawa, Y.; Goto, Y.; Inagaki, S. Synthesis of 9,9 '-spirobifluorene-based conjugated microporous polymers by FeCl3-mediated polymerization. Polym. Chem. 2016, 7(6), 1290−1296  doi: 10.1039/C5PY01900A

    21. [21]

      Li, W.; Zhang, A.; Gao, H.; Chen, M.; Liu, A.; Bai, H.; Li, L. Massive preparation of pitch-based organic microporous polymers for gas storage. Chem. Commun. 2016, 52(13), 2780−2783  doi: 10.1039/C5CC07908J

    22. [22]

      Gao, H.; Ding, L.; Bai, H.; Li, L. Microporous organic polymers based on hyper-crosslinked coal tar: preparation and application for gas adsorption. ChemSusChem 2017, 10(3), 618−623  doi: 10.1002/cssc.v10.3

    23. [23]

      Li, B. Y.; Guan, Z. H.; Yang, X. J.; Wang, W. D.; Wang, W.; Hussain, I.; Song, K. P.; Tan, B. E.; Li, T. Multifunctional microporous organic polymers. J. Mater. Chem. A 2014, 2(30), 11930−11939  doi: 10.1039/C4TA01081G

    24. [24]

      Gao, H.; Ding, L.; Bai, H.; Liu, A. H.; Li, S. Z.; Li, L. Pitch-based hyper-cross-linked polymers with high performance for gas adsorption. J. Mater. Chem. A 2016, 4(42), 16490−16498  doi: 10.1039/C6TA07033G

    25. [25]

      Pan, L.; Chen, Q.; Zhu, J. H.; Yu, J. G.; He, Y. J.; Han, B. H. Hypercrosslinked porous polycarbazoles via one-step oxidative coupling reaction and Friedel-Crafts alkylation. Polym. Chem. 2015, 6(13), 2478−2487  doi: 10.1039/C4PY01797H

    26. [26]

      Ben, T.; Li, Y.; Zhu, L.; Zhang, D.; Cao, D.; Xiang, Z.; Yao, X.; Qiu, S. Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF). Energy Environ. Sci. 2012, 5(8), 8370−8376  doi: 10.1039/c2ee21935b

    27. [27]

      Zhang, D.; Tao, L. M.; Wang, Q. H.; Wang, T. M. A facile synthesis of cost-effective triphenylamine-containing porous organic polymers using different crosslinkers. Polymer 2016, 82, 114−120  doi: 10.1016/j.polymer.2015.11.041

    28. [28]

      Luo, Y. L.; Zhang, S. C.; Ma, Y. X.; Wang, W.; Tan, B. Microporous organic polymers synthesized by self-condensation of aromatic hydroxymethyl monomers. Polym. Chem. 2013, 4(4), 1126−1131  doi: 10.1039/C2PY20914D

    29. [29]

      Gao, H.; Ding, L.; Li, W. Q.; Ma, G. F.; Bai, H.; Li, L. Hyper-cross-linked organic microporous polymers based on alternating copolymerization of bismaleimide. ACS Macro Lett. 2016, 5(3), 377−381  doi: 10.1021/acsmacrolett.6b00015

    30. [30]

      Kou, J.; Sun, L. B. Fabrication of nitrogen-doped porous carbons for highly efficient CO2 capture: rational choice of a polymer precursor. J. Mater. Chem. A 2016, 4(44), 17299−17307  doi: 10.1039/C6TA07305K

    31. [31]

      Rabbani, M. G.; El-Kaderi, H. M. Template-free Synthesis of a highly porous benzimidazole-linked polymer for CO2 capture and H2 storage. Chem. Mater. 2011, 23(7), 1650−1653  doi: 10.1021/cm200411p

    32. [32]

      Martin, C. F.; Stoeckel, E.; Clowes, R.; Adams, D. J.; Cooper, A. I.; Pis, J. J.; Rubiera, F.; Pevida, C. Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. J. Mater. Chem. 2011, 21(14), 5475−5483  doi: 10.1039/c0jm03534c

    33. [33]

      Ren, X.; Li, H.; Chen, J.; Wei, L.; Modak, A.; Yang, H.; Yang, Q. N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture. Carbon 2017, 114, 473−481  doi: 10.1016/j.carbon.2016.12.056

    34. [34]

      Lin, Y.; Xiong, K.; Lu, Z.; Liu, S.; Zhang, Z.; Lu, Y.; Fu, R.; Wu, D. Functional nanonetwork-structured polymers and carbons with silver nanoparticle yolks for antibacterial application. Chem. Commun. 2017, 53(70), 9777−9780  doi: 10.1039/C7CC04621A

    35. [35]

      Li, G.; Zhang, B.; Wang, Z. Facile synthesis of fluorinated microporous polyaminals for adsorption of carbon dioxide and selectivities over nitrogen and methane. Macromolecules 2016, 49(7), 2575−2581  doi: 10.1021/acs.macromol.6b00147

    36. [36]

      Wang, Z. G.; Liu, X.; Wang, D.; Jin, J. Troger's base-based copolymers with intrinsic microporosity for CO2 separation and effect of Troger's base on separation performance. Polym. Chem. 2014, 5(8), 2793−2800  doi: 10.1039/c3py01608k

    37. [37]

      Yang, X.; Yao, S.; Yu, M.; Jiang, J. X. Synthesis and gas adsorption properties of tetra-armed microporous organic polymer networks based on triphenylamine. Macromol. Rapid Commun. 2014, 35(8), 834−839  doi: 10.1002/marc.v35.8

    38. [38]

      Zhu, Y.; Long, H.; Zhang, W. Imine-linked porous polymer frameworks with high small gas (H2, CO2, CH4, C2H2) uptake and CO2/N2 selectivity. Chem. Mater. 2013, 25(9), 1630−1635  doi: 10.1021/cm400019f

    39. [39]

      Ashourirad, B.; Arab, P.; Verlander, A.; El-Kaderi, H. M. From azo-linked polymers to microporous heteroatom-doped carbons: tailored chemical and textural properties for gas separation. ACS Appl. Mater. Interfaces 2016, 8(13), 8491−8501  doi: 10.1021/acsami.6b00567

  • 加载中
    1. [1]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Yao-Yu MaWen-Juan ShiGang-Ding WangXin LiuLei HouYao-Yu Wang . Enhancing ethane/ethylene separation performance through the amino-functionalization of ethane-selective MOF. Chinese Chemical Letters, 2025, 36(3): 109729-. doi: 10.1016/j.cclet.2024.109729

    4. [4]

      Xiaoyan Peng Xuanhao Wu Fan Yang Yefei Tian Mingming Zhang Hongye Yuan . Gas sensors based on metal-organic frameworks: challenges and opportunities. Chinese Journal of Structural Chemistry, 2024, 43(3): 100251-100251. doi: 10.1016/j.cjsc.2024.100251

    5. [5]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    6. [6]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

    7. [7]

      Cheng ChengNasir AliJi LiuJuan QiaoMing WangLi Qi . Construction of degradable liposome-templated microporous metal-organic frameworks with commodious space for enzymes. Chinese Chemical Letters, 2024, 35(11): 109812-. doi: 10.1016/j.cclet.2024.109812

    8. [8]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    9. [9]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

    10. [10]

      Yikun WangQiaomei ChenShijie LiangDongdong XiaChaowei ZhaoChristopher R. McNeillWeiwei Li . Near-infrared double-cable conjugated polymers based on alkyl linkers with tunable length for single-component organic solar cells. Chinese Chemical Letters, 2024, 35(4): 109164-. doi: 10.1016/j.cclet.2023.109164

    11. [11]

      Zhaoru ChenXiaoxu LiuHaonan ChenJialong LiXiaofeng WangJianfeng Zhu . Application of epoxy resin in cultural relics protection. Chinese Chemical Letters, 2024, 35(4): 109194-. doi: 10.1016/j.cclet.2023.109194

    12. [12]

      Chenlu HuangXinyu YangQingyu YuLinhua ZhangDunwan Zhu . Gas-generating polymersomes-based amplified photoimmunotherapy for abscopal effect and tumor metastasis inhibition. Chinese Chemical Letters, 2024, 35(6): 109680-. doi: 10.1016/j.cclet.2024.109680

    13. [13]

      Yu DengYan LiuYonghui DengJinsheng ChengYidong ZouWei LuoIn situ sulfur-doped mesoporous tungsten oxides for gas sensing toward benzene series. Chinese Chemical Letters, 2024, 35(7): 108898-. doi: 10.1016/j.cclet.2023.108898

    14. [14]

      Haoyang WangRonghao ZhangYanlun RenLi Zhang . A convenient method for measuring gas-liquid volumetric mass transfer coefficient in micro reactors. Chinese Chemical Letters, 2024, 35(4): 108833-. doi: 10.1016/j.cclet.2023.108833

    15. [15]

      Jichun LiZhengren WangYu DengHongxiu YuYonghui DengXiaowei ChengKaiping Yuan . Construction of mesoporous silica-implanted tungsten oxides for selective acetone gas sensing. Chinese Chemical Letters, 2024, 35(11): 110111-. doi: 10.1016/j.cclet.2024.110111

    16. [16]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    17. [17]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    18. [18]

      Xin ZhangJunyu ChenXiang PeiLinxin YangLiang WangLuona ChenGuangmei YangXibo PeiQianbing WanJian Wang . Drug-loading ZIF-8 for modification of microporous bone scaffold to promote vascularized bone regeneration. Chinese Chemical Letters, 2024, 35(6): 108889-. doi: 10.1016/j.cclet.2023.108889

    19. [19]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    20. [20]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

Metrics
  • PDF Downloads(0)
  • Abstract views(867)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return