Citation: Cheng-Sha Wei, Ai Lu, Su-Ming Sun, Xing-Wen Wei, Xiao-Yu Zhou, Jie Sun. Establishment of Constitutive Model of Silicone Rubber Foams Based on Statistical Theory of Rubber Elasticity[J]. Chinese Journal of Polymer Science, ;2018, 36(9): 1077-1083. doi: 10.1007/s10118-018-2125-8 shu

Establishment of Constitutive Model of Silicone Rubber Foams Based on Statistical Theory of Rubber Elasticity

  • Corresponding author: Jie Sun, sunjie@caep.cn
  • Received Date: 26 January 2018
    Revised Date: 16 January 2018
    Accepted Date: 7 February 2018
    Available Online: 11 May 2018

  • In this study, a constitutive model based on microscopic physical mechanism of silicone rubber foams was established. A theoretical statistical model of rubber elasticity considering the effect of dangling chains was modified to build this model. When a strain amplification factor (X) was introduced, the theoretical model could fit the tensile stress-strain data of mono- and bi-modal foam matrix well (Adj. R-Square = 0.9989, 0.9983). Parameters related to the polymer network, namely, average molecular weight (Mc) and volume fraction (ϕ) of chain segments between adjacent cross-linking points (network strands), were calculated by probabilistic method from the number-average molecular weight (Mn), vinyl content (wVi) of the primary polysiloxanes and percent conversion (q) of vinyl groups. The primary and infinite strain amplification factors (X0, X) and decay exponent (z), introduced by X and related to the nanoparticles, were obtained by fitting. Inspired by the fact that the actual strain of matrix was lower than that of the foams’, we introduced another item, strain hysteresis item (H, related with the foam porosity and cell structure), into the statistical model as well. With the same above values of Mc, ϕ, X0 and X, the model could also fit the compressive stress-strain data of mono- and bi-modal foams well (Adj. R-Square = 0.9948, 0.9985). Interestingly, the strain hysteresis items of the mono- and bi-modal foams almost completely coincided under all experimental strains, which may be attributed to the almost equal porosity and similar cell structure of the two foams. This constitutive model may connect the macroscopic stress-strain behaviour to the parameters of microscopic molecular structures, promisingly providing a basis for the performance improvement and optimization of silicone rubber foams.
  • 加载中
    1. [1]

      Song, L.; Lu, A.; Feng, P.; Lu, Z. Preparation of silicone rubber foam using supercritical carbon dioxide. Mater. Lett. 2014, 121, 126−128  doi: 10.1016/j.matlet.2014.01.125

    2. [2]

      Chen, H. B.; Liu, B.; Huang, W.; Wu, W. H. Gamma radiation induced effects of compressed silicone foam. Polym. Degrad. Stab. 2015, 114, 89−93  doi: 10.1016/j.polymdegradstab.2015.02.007

    3. [3]

      Kumar, A.; Mollah, A. A.; Keshri, A. K.; Kumar, M.; Singh, K.; Rallabhandi, K. D. V. S.; Seelaboyina, R. Development of macroporous silicone rubber for acoustic applications. Ind. Eng. Chem. Res. 2016, 55(32), 8751−8760  doi: 10.1021/acs.iecr.6b02051

    4. [4]

      Liao, X.; Xu, H.; Li, S.; Zhou, C.; Li, G.; Park, C. B. The effects of viscoelastic properties on the cellular morphology of silicone rubber foams generated by supercritical carbon dioxide. RSC Adv. 2015, 5(129), 106981−106988  doi: 10.1039/C5RA22242G

    5. [5]

      Liu, P.; Liu, D.; Zou, H.; Fan, P.; Xu, W. Structure and properties of closed-cell foam prepared from irradiation crosslinked silicone rubber. J. Appl. Polym. Sci. 2009, 113(6), 3590−3595  doi: 10.1002/app.v113:6

    6. [6]

      Yang, Q.; Yu, H.; Song, L.; Lei, Y.; Zhang, F.; Lu, A.; Liu, T.; Luo, S. Solid-state microcellular high temperature vulcanized (HTV) silicone rubber foam with carbon dioxide. J. Appl. Polym. Sci. 2017, 134(20), 44807

    7. [7]

      Labouriau, A.; Robison, T.; Meincke, L.; Wrobleski, D.; Taylor, D.; Gill, J. Aging mechanisms in RTV polysiloxane foams. Polym. Degrad. Stabil. 2015, 121, 60−68  doi: 10.1016/j.polymdegradstab.2015.08.013

    8. [8]

      Rusch, K. C. Energy-absorbing characteristics of foamed polymers. J. Appl. Polym. Sci. 1970, 14(6), 1433−1447  doi: 10.1002/app.1970.070140603

    9. [9]

      Avalle, M.; Belingardi, G.; Ibba, A. Mechanical models of cellular solids: Parameters identification from experimental tests. Int. J. Impact. Eng. 2007, 34(1), 3−27  doi: 10.1016/j.ijimpeng.2006.06.012

    10. [10]

      Gibson, L. J. Modelling the mechanical behavior of cellular materials. Mat. Sci. Eng A-Struct. 1989, 110, 1−36  doi: 10.1016/0921-5093(89)90154-8

    11. [11]

      Itskov, M.; Knyazeva, A. A rubber elasticity and softening model based on chain length statistics. Int. J. Solids. Struct. 2016, 80, 512−519  doi: 10.1016/j.ijsolstr.2015.10.011

    12. [12]

      Schlögl, S.; Trutschel, M. L.; Chassé, W.; Riess, G.; Saalwächter, K. Correction to entanglement effects in elastomers: macroscopic vs microscopic properties. Macromolecules 2015, 48(8), 2855−2855  doi: 10.1021/acs.macromol.5b00643

    13. [13]

      Guth, E.; James, H. M. Elastic and thermoelastic properties of rubber like materials. Ind. Eng. Chem. Res. 1941, 33(5), 624−629  doi: 10.1021/ie50377a017

    14. [14]

      Rubinstein, M.; Panyukov, S. Elasticity of polymer networks. Macromolecules 2002, 35(17), 6670−6686  doi: 10.1021/ma0203849

    15. [15]

      Vega, D. A.; Villar, M. A.; Alessandrini, J. L.; Vallés, E. M. Terminal relaxation of model poly(dimethylsiloxane) networks with pendant chains. Macromolecules 2001, 34(13), 4591−4596  doi: 10.1021/ma0014721

    16. [16]

      Tsenoglou, C. Rubber elasticity of cross-linked networks with trapped entanglements and dangling chains. Macromolecules 1989, 22(1), 284−289  doi: 10.1021/ma00191a052

    17. [17]

      Lorenz, H.; Klüppel, M.; Heinrich, G. Microstructure-based modelling and FE implementation of filler-induced stress softening and hysteresis of reinforced rubbers. ZAMM-Z. Angew. Math. Me. 2012, 92(8), 608−631  doi: 10.1002/zamm.v92.8

    18. [18]

      Klüppel, M.; Schramm, J. A generalized tube model of rubber elasticity and stress softening of filler reinforced elastomer systems. Macromol. Theor. Simul. 2000, 9(9), 742−754  doi: 10.1002/(ISSN)1521-3919

    19. [19]

      Marrucci, G. A mechanical model for rubbers containing entanglements. Rheo. Acta 1979, 18(2), 193−198  doi: 10.1007/BF01542766

    20. [20]

      Curro, J. G.; Pincus, P. A theoretical basis for viscoelastic relaxation of elastomers in the long-time limit. Macromolecules 1983, 16(4), 559−562  doi: 10.1021/ma00238a014

    21. [21]

      Xu, Q.; Pang, M.; Zhu, L.; Zhang, Y.; Feng, S. Mechanical properties of silicone rubber composed of diverse vinyl content silicone gums blending. Mater. Design 2010, 31(9), 4083−4087  doi: 10.1016/j.matdes.2010.04.052

    22. [22]

      Urayama, K. Network topology-mechanical properties relationships of model elastomers. Polym. J. 2008, 40(8), 669−678  doi: 10.1295/polymj.PJ2008033

  • 加载中
    1. [1]

      Chuan LiYangyang HanYanan ZhaiKe LiXingzhong LiuZhuan ZhangCai JiaYongsheng Che . Phomaketals A and B, pentacyclic meroterpenoids from a eupC overexpressed mutant strain of Phoma sp.. Chinese Chemical Letters, 2024, 35(7): 109019-. doi: 10.1016/j.cclet.2023.109019

    2. [2]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    3. [3]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

    4. [4]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

    5. [5]

      Yanqi WuYuhong GuanPeilin HuangHui ChenLiping BaiZhihong Jiang . Preparation of norovirus GII loop mediated isothermal amplification freeze-drying microsphere reagents and its application in an on-site integrated rapid detection platform. Chinese Chemical Letters, 2024, 35(9): 109308-. doi: 10.1016/j.cclet.2023.109308

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

Metrics
  • PDF Downloads(0)
  • Abstract views(612)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return