Citation: Silvana Alfei, Gaby Brice Taptue, Silvia Catena, Angela Bisio. Synthesis of Water-soluble, Polyester-based Dendrimer Prodrugs for Exploiting Therapeutic Properties of Two Triterpenoid Acids[J]. Chinese Journal of Polymer Science, ;2018, 36(9): 999-1010. doi: 10.1007/s10118-018-2124-9 shu

Synthesis of Water-soluble, Polyester-based Dendrimer Prodrugs for Exploiting Therapeutic Properties of Two Triterpenoid Acids

  • Corresponding author: Silvana Alfei, alfei@difar.unige.it
  • Received Date: 15 December 2017
    Revised Date: 15 December 2017
    Accepted Date: 7 February 2018
    Available Online: 28 March 2018

  • Dendrimers are macromolecules characterized by high controlled size, shape and architecture, presence of inner cavities able to accommodate small molecules and many peripheral functional groups to bind target entities. They are of eminent interest for biomedical applications, including gene transfection, tissue engineering, imaging, and drug delivery. The well-known pharmacological activities of ursolic and oleanolic acids are limited by their small water solubility, non-specific cell distribution, low bioavailability, poor pharmacokinetics, and their direct administration could result in the release of thrombi. To overcome such problems, in this paper we described their physical incorporation inside amino acids-modified polyester-based dendrimers which made them highly water-soluble. IR, NMR, zeta potential, mean size of particles, buffer capacity and drug release profiles of prepared materials were reported. The achieved water-soluble complexes harmonize a polycationic character and a buffer capacity which presuppose efficient cell penetration and increased residence time with a biodegradable cell respectful scaffold, thus appearing as a promising team of not toxic prodrugs for safe administration of ursolic and oleanolic acids.
  • 加载中
    1. [1]

      Hourani, R.; Kakkar, A. Advances in the elegance of chemistry in designing dendrimers. Macromol. Rapid Commun. 2010, 31, 947−974  doi: 10.1002/marc.200900712

    2. [2]

      Sowinska, M.; Urbanczyk-Lipkowska, Z. Advances in the chemistry of dendrimers. New J. Chem. 2014, 38, 2168−2203  doi: 10.1039/c3nj01239e

    3. [3]

      Madaan, K.; Kumar, S.; Poonia, N.; Lather, V.; Pandita, D. Dendrimers in drug delivery and targeting: Drug-dendrimer interactions and toxicity issues. J. Pharm. Bioall. Sci. 2014, 6, 139−150  doi: 10.4103/0975-7406.130965

    4. [4]

      Hu, X. L.; Liu, G. H.; Li, Y.; Wang, X. R.; Liu, S. Y. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals. J. Am. Chem. Soc. 2015, 137, 362−368  doi: 10.1021/ja5105848

    5. [5]

      Li, X.; Qian, Y.; Liu, T.; Hu, X.; Zhang, G.; You, Y.; Liu, S. Amphiphilic multiarm star block copolymer-based multifunctional unimolecular micelles for cancer targeted drug delivery and MR imaging. Biomaterials 2011, 32, 6595−605  doi: 10.1016/j.biomaterials.2011.05.049.

    6. [6]

      Xu, J.; Luo, S. Z.; Shi, W. F.; Liu, S. Y. Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir 2006, 22, 989−997  doi: 10.1021/la0522707

    7. [7]

      Luo, S. Z.; Xu, J.; Zhu, Z. Y.; Wu, C.; Liu, S. Y. Phase transition behavior of unimolecular micelles with thermoresponsive poly(N-isopropylacrylamide) coronas. J. Physic. Chem. 2006, 110, 9132−9139  doi: 10.1021/jp061055b

    8. [8]

      Xu, H. X.; Xu, J.; Jiang, X. Z.; Zhu, Z. Y.; Rao, J. Y.; Yin, J.; Wu, T.; Liu, H. W.; Liu, S. Y. Thermosensitive unimolecular micelles surface-decorated with gold nanoparticles of tunable spatial distribution. Chem. Mater. 2007, 19, 2489−2494  doi: 10.1021/cm070088g

    9. [9]

      Luo, S.; Hu, X.; Ling, C.; Liu, X.; Chen, S.; Han, M. Multiarm star-like unimolecular micelles with a dendritic core and a dual thermosensitive shell. Polym. Int. 2011, 60, 717−724  doi: 10.1002/pi.2989

    10. [10]

      Kesharwani, P.; Jain, K.; Jain, N. Dendrimer as nanocarrier for drug delivery. Prog. Polym. Sci. 2014, 39, 268−307  doi: 10.1016/j.progpolymsci.2013.07.005

    11. [11]

      Datija, J.; Sai, V. V. R.; Mukherji, S. Dendrimers in biosensors: concept and applications. J. Mater. Chem. 2011, 21, 14367−14386  doi: 10.1039/c1jm10527b

    12. [12]

      Caminade, A M. in " Dendrimers: towards catalytic, material and biomedical uses, Chapter 15”, ed. By Caminade, A. M.; Turrin, C. O.; Laurent, R.; Ouali, A.; Delavaux-Nicot, B. John Wiley & Sons, Chichester, UK., 2011, p. 375–392.

    13. [13]

      Kim, J. H.; Park, K.; Nam, H. Y., Lee, S.; Kim, K.; Kwon, I. C. Polymers for bioimaging. Prog. Polym. Sci. 2007, 32, 1031-1053.

    14. [14]

      Wang, Z.; Niu, G.; Chen, X. Polymeric materials for theranostic applications. Pharm. Res. 2014, 31, 1358−1376  doi: 10.1007/s11095-013-1103-7

    15. [15]

      Dufès, C.; Uchegbu, I. F.; Schätzlein, A. G. Dendrimers in gene delivery. Adv. Drug Deliver. Rev. 2005, 57, 2177−2202  doi: 10.1016/j.addr.2005.09.017

    16. [16]

      Eliyahu, H.; Barenholz, Y.; Domb, A. J. Polymers for DNA delivery. Molecules 2005, 10, 34−64  doi: 10.3390/10010034

    17. [17]

      Pack, D. W.; Hoffman, A. S.; Pun, S.; Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 2005, 4, 581−593  doi: 10.1038/nrd1775

    18. [18]

      Schaffert, D.; Wagner, E. Gene therapy progress and prospects: synthetic polymer-based systems. Gene Ther. 2008, 15, 1131−1138  doi: 10.1038/gt.2008.105

    19. [19]

      Mintzer, M. A.; Simanek, E. E. Nonviral vectors for gene delivery. Chem. Rev. 2009, 109, 259−302  doi: 10.1021/cr800409e

    20. [20]

      O’Rorke, S.; Keeney, M.; Pandit, A. Non-viral polyplexes: scaffold mediated delivery for gene therapy. Prog. Polym. Sci. 2010, 35, 441−458  doi: 10.1016/j.progpolymsci.2010.01.005

    21. [21]

      Marvaniya, H. M.; Parikh, P. K.; Patel, V. R.; Modi, K. N.; Sen, D. J. Dendrimer nanocarriers as versatile vectors in gene delivery. J. Chem. Pharm. Res. 2010, 2, 97−108

    22. [22]

      Guo, X.; Huang, L. Recent advances in nonviral vectors for gene delivery. Acc. Chem. Res. 2012, 45, 971−979  doi: 10.1021/ar200151m

    23. [23]

      Yue, Y.; Wu, C. Progress and perspectives in developing polymeric vectors for in vitro gene delivery. Biomater. Sci. 2013, 1, 152−170  doi: 10.1039/C2BM00030J

    24. [24]

      Biswas, S.; Torchilin, V. P. Dendrimers for siRNA delivery. Pharmaceuticals 2013, 6, 161−183  doi: 10.3390/ph6020161

    25. [25]

      Pourianazar, N. T.; Mutulu, P.; Gunduz, U. Bioapplications of poly(amidoamine) (PAMAM) dendrimers in nanomedicine. J. Nanopart. Res. 2014, 16, 2342/1−2342/38

    26. [26]

      Newkome, G. R.; Shreiner, C. D. Poly(amidoamine), polypropylenimine, and related dendrimers and dendrons possessing different 1→2 branching motifs: An overview of the divergent procedures. Polymer 2008, 49, 1−173  doi: 10.1016/j.polymer.2007.10.021

    27. [27]

      Eichman, J. D.; Bielinska, A. U.; Kukowska-Latallo, J. F.; Baker Jr, J. R. The use of PAMAM dendrimers in the efficient transfer of genetic material into cells. Sci. Technol. Today 2000, 3, 232−245  doi: 10.1016/S1461-5347(00)00273-X

    28. [28]

      Zong, H.; Shah, D.; Selwa, K.; Tsuchida, R. E.; Rattan, R.; Mohan, J.; Stein, A. B.; Otis, J. B.; Goonewardena, S. N. Design and evaluation of tumor-specific dendrimer epigenetic therapeutics chemistryopen. Chem. Open 2015, 4, 335−341

    29. [29]

      Han, L.; Huang, R.; Liu, S.; Huang, S.; Jiang, C. Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors. Mol. Pharm. 2010, 7, 2156−2165  doi: 10.1021/mp100185f

    30. [30]

      Gao, Y.; Li, Z.; Xie, X.; Wang, C.; You, J.; Mo, F.; Jin, B.; Chen, J.; Shao, J.; Chen, H.; Jia, L. Dendrimeric anticancer prodrugs for targeted delivery of ursolic acid to folate receptor-expressing cancer cells: synthesis and biological evaluation. Eur. J. Pharm. Sci. 2015, 70, 55−63  doi: 10.1016/j.ejps.2015.01.007

    31. [31]

      Zhang, Y.; Thomas, T. P.; Lee, K. H.; Li, M.; Zong, H.; Desai, A. M.; Kotlyar, A.; Huang, B.; Banaszak H. M. M.; Baker, J. R. Jr. Polyvalent saccharide-functionalized generation 3 poly(amidoamine) dendrimer-methotrexate conjugate as a potential anticancer agent. Bioorg. Med. Chem. 2011, 19, 2557−2564  doi: 10.1016/j.bmc.2011.03.019

    32. [32]

      Mekuria, S. L.; Debele, T. A.; Chou, H Y.; Tsai, H C. IL-6 antibody and RGD peptide conjugated poly(amidoamine) dendrimer for targeted drug delivery of HeLa cells. J. Phys. Chem. B 2016, 120, 123−130  doi: 10.1021/acs.jpcb.5b11125

    33. [33]

      Kolhatkar, R. B.; Kitchens, K. M.; Swaan, P. W.; Ghandehari, H. Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconj. Chem. 2007, 18, 2054−2060  doi: 10.1021/bc0603889

    34. [34]

      Waite, C. L.; Sparks, S. M.; Uhrich, K. E.; Roth, C. M. Acetylation of PAMAM dendrimers for cellular delivery of siRNA. BMC Biotechnol. 2009, 9, 9−38  doi: 10.1186/1472-6750-9-9

    35. [35]

      Liu, J. F.; Liu, J. J.; Chu, L. P.; Tong, L. L.; Gao, H. J.; Yang, C. H.; Wang, D. Z.; Shi, L. Q.; Kung, D. L.; Li, Z. J. Synthesis, biodistribution, and imaging of PEGylated-acetylated polyamidoamine dendrimers. J. Nanosci. Nanotechnol. 2014, 14, 3305−3312  doi: 10.1166/jnn.2014.7995

    36. [36]

      Ciolkowski, M.; Petersen, J. F.; Ficker, M.; Janaszewska, A.; Christensen, J. B.; Klajnert, B.; Bryszewska, M. Surface modifi-cation of PAMAM dendrimer improves its biocompatibility. Nanomed. Nanotechnol. 2012, 8, 815−817  doi: 10.1016/j.nano.2012.03.009

    37. [37]

      Ghilardi, A.; Pezzoli, D.; Bellucci, M. C.; Malloggi, C.; Negri, A.; Sgnappa, A.; Tedeschi, G.; Candiani, G.; Volonterio, A. Synthesis of multifunctional PAMAM-aminoglycoside conjugates with enhanced transfection efficiency. Bioconj. Chem. 2013, 24, 1928−1963  doi: 10.1021/bc4003635

    38. [38]

      Arima, H.; Motoyama, K.; Higashi, T. Sugar-appended polyamidoamine dendrimer conjugates with cyclodextrins as cell-specific non-viral vectors. Adv. Drug Deliver. Rev. 2013, 65, 1204−1214  doi: 10.1016/j.addr.2013.04.001

    39. [39]

      Navath, R. S. Menjoge, A. R.; Wang, B.; Romero, R.; Kannan, S.; Kannan, R. M. Amino acid-functionalized dendrimers with heterobifunctional chemoselective peripheral groups for drug delivery applications. Biomacromolecules 2010, 11, 1544−1536  doi: 10.1021/bm100186b

    40. [40]

      Park, J. H.; Park, J. S.; Choi, J. S. Basic amino acid-conjugated polyamidoamine dendrimers with enhanced gene transfection efficiency. Macromol. Res. 2014, 22, 500−508  doi: 10.1007/s13233-014-2073-2

    41. [41]

      Wang, F.; Wang, Y.; Wang, H.; Shao, N.; Chen, Y.; Cheng, Y. Synergistic effect of amino acids modified on dendrimer surface in gene delivery. Biomaterials 2014, 35, 9187−9198  doi: 10.1016/j.biomaterials.2014.07.027

    42. [42]

      Lam, S. J.; Sulistio, A.; Ladewig, K.; Wong, E. H. H.; Blencowe, A.; Qiao, G. G. Peptide-based star polymers as potential siRNA carriers. Austr. J. Chem. 2014, 67, 592−597  doi: 10.1071/CH13525

    43. [43]

      Nam, H. Y.; Nam, K.; Hahn, H. J.; Kim, B. H.; Lim, H. J.; Kim, H. J.; Choi, J. S.; Park, J. S. Biodegradable PAMAM ester for enhanced transfection efficiency with low cytotoxicity. Biomaterials 2009, 30, 665−673  doi: 10.1016/j.biomaterials.2008.10.013

    44. [44]

      Liu, M.; Chen, J.; Xue, Y. N.; Liu, W. M.; Zhuo, R. X.; Huang, S. W. Poly(beta-aminoester)s with pendant primary amines for efficient gene delivery. Bioconj. Chem 2009, 20, 2317−2323  doi: 10.1021/bc900317m

    45. [45]

      Eltoukhy, Q. Effect of molecular weight of amine end-modified poly(β-amino ester)s on gene delivery efficiency and toxicity. Biomaterials 2012, 33, 3594−3603  doi: 10.1016/j.biomaterials.2012.01.046

    46. [46]

      Bishop, C. J.; Ketola, T M.; Tzeng, S. Y.; Sunshine, J. C.; Urttio, A.; Lemmetyinen, H., Vuorimaa-Laukkanen, E., Yliperttula, M.; Green, J. J. The effect and role of carbon atoms in poly(beta-amino ester)s for DNA Binding and Gene Delivery. J. Am. Chem. Soc. 2013, 135, 6951−6957  doi: 10.1021/ja4002376

    47. [47]

      Chang, K. L.; Higuchi, Y.; Kawakami, S.; Yamashita, F.; Hashida, M. Development of lysine-histidine dendron modified chitosan for improving transfection efficiency in HEK293 cells. J. Control. Release 2011, 156, 195−202  doi: 10.1016/j.jconrel.2011.07.021

    48. [48]

      Wen, Y.; Guo, Z.; Du, Z.; Fang, R.; Wu, H.; Zeng, X.; Wang, C.; Feng, M.; Pan, S. Serum tolerance and endosomal escape capacity of histidine-modified pDNA-loaded complexes based on polyamidoamine dendrimer derivatives. Biomaterials 2012, 33, 8111−8121  doi: 10.1016/j.biomaterials.2012.07.032

    49. [49]

      Wang, F.; Wang, Y.; Wang, H.; Shao, N.; Chen, Y.; Cheng, Y. Synergistic effect of amino acids modified on dendrimer surface in gene delivery. Biomaterials 2014, 35, 9187−9198  doi: 10.1016/j.biomaterials.2014.07.027

    50. [50]

      Liu, X.; Liu, C.; Zhou, J.; Chen, C.; Qu, F.; Rossi, J. J.; Rocchi, P.; Peng, L. Promoting siRNA delivery via enhanced cellular uptake using an arginine-decorated amphiphilic dendrimer. Nanoscale 2015, 7, 3867−3875  doi: 10.1039/C4NR04759A

    51. [51]

      Kim, J. B.; Choi, J. S.; Nam, K.; Lee, M.; Park, J. S.; Lee, J. K. Enhanced transfection of primary cortical cultures using arginine-grafted PAMAM dendrimer, PAMAM-Arg. J. Control. Release 2006, 114, 110−117  doi: 10.1016/j.jconrel.2006.05.011

    52. [52]

      Kim, T.; Bai, C. Z.; Nam, K.; Park, J. Comparison between arginine conjugated PAMAM dendrimers with structural diversity for gene delivery systems. J. Control. Release 2009, 136, 132−139  doi: 10.1016/j.jconrel.2009.01.028

    53. [53]

      Liu, J. Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol 1995, 49, 57−68  doi: 10.1016/0378-8741(95)90032-2

    54. [54]

      Andersson, D.; Cheng, Y.; Duan, R. D. Ursolic acid inhibits the formation of aberrant crypt foci and affects colonic sphingomyelin hydrolyzing enzymes in azoxymethane-treated rats. J. Cancer Res. Clin. Oncol 2008, 134, 101−107

    55. [55]

      Furtado, R. A.; Rodrigues, É. P.; Araujo, F. R. R.; Oliveira, W. L.; Furtado, M. A.; Castro, M. B.; Cunha, W. R.; Tavares, D. C. Ursolic acid and oleanolic acid suppress preneoplastic lesions induced by 1,2-dimethylhydrazine in rat colon. Toxicol. Pathol. 2008, 36, 576−580  doi: 10.1177/0192623308317423

    56. [56]

      Gao, J. Hepatoprotective activity of terminalia catappa l. leaves and its two triterpenoids. J. Pharm. Pharmacol. 2004, 56, 1449−1455  doi: 10.1211/0022357044733

    57. [57]

      Liu, J. The Effects of 10 triterpenoid compounds on experimental liver injury in mice. Fundam. Appl. Toxicol. 1994, 22, 34−40  doi: 10.1006/faat.1994.1005

    58. [58]

      Martin-Aragón, S.; de Las Heras, B.; Sanchez-Reus, M. I.; Benedi, J. Pharmacological modification of endogenous antioxidant enzymes by ursolic acid on tetrachloride-induced liver damage in rats and primary cultures of rat hepatocytes. Exp. Toxicol. Pathol. 2001, 53, 199−206  doi: 10.1078/0940-2993-00185

    59. [59]

      Saravanan, R.; Viswanathan, P.; Pugalendi, K. V. Protective effect of ursolic acid on ethanol-mediated experimental liver damage in rats. Life Sci. 2006, 78, 713−718  doi: 10.1016/j.lfs.2005.05.060

    60. [60]

      Somova, L. O.; Nadar, A.; Rammanan, P.; Shode, F. O. Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine 2003, 10, 115−121  doi: 10.1078/094471103321659807

    61. [61]

      Ovesná, Z.; Kozics, K.; Slamenovˇ, D. Protective effects of ursolic acid and oleanolic acid in leukemic cells. Mutation Res 2006, 600, 131−137  doi: 10.1016/j.mrfmmm.2006.03.008

    62. [62]

      Shishodia, S.; Majumdar, S.; Banerjee, S.; Aggarwal, B. B. Ursolic acid inhibits nuclear factor-kappaB activation induced by carcinogenic agents through suppression of IkappaBalpha kinase and p65 phosphorylation: correlation with down-regulation of cyclooxygenase 2, matrix metalloproteinase 9, and cyclin D1. Cancer Res. 2003, 63, 4375−83

    63. [63]

      Moon H. K.; Yang, E. S.; Park, J. W. Protection of per-oxynitrite-induced DNA damage by dietary antioxidant. Arch. Pharm. Res. 2006, 29, 213−217  doi: 10.1007/BF02969396

    64. [64]

      Lee, I.; Lee, J.; Lee, Y. H.; Leonard, J. Ursolic acid-induced changes in tumor growth, O2 consumption, and tumor interstitial fluid pressure. Anticancer Res. 2001, 21, 2827−2833

    65. [65]

      Yim, E. K.; Lee, M. J.; Lee, K. H., Um, S. J.; Park, J. S. Antiproliferative and antiviral mechanisms of ursolic acid and dexamethasone in cervical carcinoma cell lines. Int. J. Gynecol. Cancer. 2006, 16, 2023−2031  doi: 10.1111/ijg.2006.16.issue-6

    66. [66]

      Huang, M. T.; Ho, C. T.; Wang, Z. Y.; Ferraro, T.; Lou, Y. R.; Stauber, K.; Ma, W.; Georgiadis, C.; Laskin, J. D.; Conney, A. K. Inhibition of skin tumorigenesis by rosemary and its constituents carnosol and ursolic acid. Cancer. Res. 1994, 54, 701−708

    67. [67]

      Tokuda, H.; Ohigashi, H.; Koshimizu, K.; Ito, Y. Inhibitory effects of ursolic and oleanolic acid on skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Cancer Lett. 1986, 33, 279−285  doi: 10.1016/0304-3835(86)90067-4

    68. [68]

      Kim, K. A.; Lee, J. S.; Park, H. J.; Kim, J. W.; Kim, C. J.; Shim, I. S.; Kim, N. J.; Han, S. M.; Lim, S. Inhibition of cytochrome P450 activities by oleano-lic acid and ursolic acid in human liver microsomes. Life Sci. 2004, 74, 2769−2779  doi: 10.1016/j.lfs.2003.10.020

    69. [69]

      Ramos, A. A.; Lima, C. F.; Pereira, M. L.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Antigenotoxic effects of quercetin, rutin and ursolic acid on HepG2 cells: evaluation by the comet assay. Toxicol. Lett. 2008, 177, 66−73  doi: 10.1016/j.toxlet.2008.01.001

    70. [70]

      Chiang, L. C.; Chiang, W.; Chang, M. Y.; Ng, L. T.; Lin, C. C. Antileukemic activity of selected natural products in Taiwan. Am. J. Chin. Med. 2003, 31, 37−46  doi: 10.1142/S0192415X03000825

    71. [71]

      Fan, Y. M.; Xu, L. Z.; Gao, J.; Wang, Y.; Tang, X. H. Zhao, X. N.; Zhang, Z. X. Phytochemical and antiinflammatory studies on Terminalia catappa. Fitoterapia 2004, 75, 253−260  doi: 10.1016/j.fitote.2003.11.007

    72. [72]

      Peng, Q.; Zhu, J.; Yu, Y.; Hoffman, L.; Yang, X. Hyperbranched lysine-arginine copolymer for gene delivery. J. Biomater. Sci. Polym. Ed. 2015, 26, 1163−1177  doi: 10.1080/09205063.2015.1080482

    73. [73]

      Resende, F. A.; Mattos de Andrade Barcala, C. A.; da Silva Faria, M. C.; Kato, F. H.; Cunha, W. R.; Tavares, D. C. Antimutagenicity of ursolic acid and oleanolic acid against doxorubicin-induced clastogenesis in Balb/c mice. Life Sci. 2006, 79, 1268−1273  doi: 10.1016/j.lfs.2006.03.038

    74. [74]

      Lu, J.; Zheng, Y. L.; Wu, D. M.; Luo, L.; Sun, D. X.; Shan, Q. Ursolic acid ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by D-galactose. Biochem. Pharmacol. 2007, 74, 1078−1090  doi: 10.1016/j.bcp.2007.07.007

    75. [75]

      Saravanan, R. Pugalendi, V. Impact of ursolic acid on chronic ethanol-induced oxidative stress in the rat heart. Pharmacol. Rep. 2006, 58, 41−47

    76. [76]

      Wang, Y.; He, Z.; Deng, S. Ursolic acid reduces the metalloprotease/anti-metalloprotease imbalance in cerebral ischemia and reperfusion injury. Drug Des., Devel. Ther. 2016, 10, 1663−1674

    77. [77]

      Senthil, S.; Chandramohan, G.; Pugalendi, K. V. Isomers (oleanolic and ursolic acids) differ in their protective effect against isoproterenol-induced myocardial ischemia in rats. Int. J. Cardiol. 2007, 119, 131−133  doi: 10.1016/j.ijcard.2006.07.108

    78. [78]

      Radhiga, T.; Rajamanickam, C.; Senthil, S.; Pugalendi, K. V. Effect of ursolic acid on cardiac marker enzymes, lipid profile and macroscopic enzyme mapping assay in isoproterenol-induced myocardial ischemic rats. Food Chem. Toxicol. 2012, 50, 3971−3977  doi: 10.1016/j.fct.2012.07.067

    79. [79]

      Aguirre-Crespo, F.; Vergara-Galicia, J.; Villalobos-Molina, R.; López-Guerrero, J. J.; Navarrete-Vázquez, G.; Estrada-Soto, S. Ursolic acid mediates the vasorelaxant activity of Lepechinia caulescens via NO release in isolated rat thoracic aorta. Life Sci. 2006, 79, 1062−1068  doi: 10.1016/j.lfs.2006.03.006

    80. [80]

      Martınez-Gonzalez, J.; Rodrıguez-Rodrıguez, R.; Gonzalez-Dıez, M.; Rodrıguez, C.; Herrera, M. D.; Ruiz-Gutierrez, V.; Badimon, L. Oleanolic acid induces prostacyclin release in human vascular smooth muscle cells through a cyclooxygenase-2-dependent mechanism. J. Nutr. 2008, 138, 443−448  doi: 10.1093/jn/138.3.443

    81. [81]

      Somova, L. O.; Nadar, A.; Rammanan, P.; Shode, F. O. Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine 2003, 10, 115−121  doi: 10.1078/094471103321659807

    82. [82]

      Somova, L. I.; Shode, F. O.; Mipando, M. Cardiotonic and antidysrhythmic effects of oleanolic and ursolic acids, methyl maslinate and uvaol. Phytomedicine 2004, 11, 121−129  doi: 10.1078/0944-7113-00329

    83. [83]

      Ikeda, Y.; Murakami, A.; Ohigashi, H. Ursolic acid: an anti- and pro-inflammatory triterpenoid. Mol. Nutr. Food Res. 2008, 52, 26−42  doi: 10.1002/(ISSN)1613-4133

    84. [84]

      Messner, B. Ursolic acid causes DNA damage, p53-mediated, mitochondria-and caspase-dependent human endothelial cell apoptosis, and accelerates atherosclerotic plaque formation in vivo. Atherosclerosis 2011, 219, 402−408  doi: 10.1016/j.atherosclerosis.2011.05.025

    85. [85]

      Liu, Y.; Oh, S. J.; Chang, K. H.; Kim, Y. G.; Lee, M. Y. Antiplatelet effect of AMP-activated protein kinase activator and its potentiation by the phosphodiesterase inhibitor dipyridamole. Biochem. Pharmacol. 2013, 86, 914−925  doi: 10.1016/j.bcp.2013.07.009

    86. [86]

      Kim, M.; Han, C. H.; Lee, M. Y. Enhancement of platelet aggregation by ursolic acid and oleanolic acid. Biomol. Ther 2014, 22, 254−259  doi: 10.4062/biomolther.2014.008

    87. [87]

      Liu, J. Oleanolic acid and ursolic acid: research perspectives. J. Ethnopharmacol. 2005, 100, 92−94  doi: 10.1016/j.jep.2005.05.024

    88. [88]

      Nahak, P.; Karmakar, G.; Chettri, P.; Roy, B.; Guha, P.; Besra, S. E.; Soren, A.; Bykov, A. G.; Akentiev, A. V.; Noskov, B. A.; Panda, A. K. Influence of lipid core material on physicochemical characteristics of an ursolic acid-loaded nanostructured lipid carrier: an attempt to enhance anticancer activity. Langmuir 2016, 32, 9816−9825  doi: 10.1021/acs.langmuir.6b02402

    89. [89]

      Alfei, S.; Castellaro, S. Synthesis and characterization of polyester-based dendrimers containing peripheral arginine or mixed amino acids as potential vectors for gene and drug delivery. Macromol. Res. 2017, 25(12), 1172−1186  doi: 10.1007/s13233-017-5160-3

    90. [90]

      Bisio, A.; Romussi, G.; Russo, E.; Cafaggi, S.; Schito, A. M.; Repetto, B.; De Tommasi, N. Antimicrobial activity of the ornamental species salvia corrugata, a potential new crop for extractive purposes. J. Agric. Food Chem. 2008, 56, 10468−10472  doi: 10.1021/jf802200x

    91. [91]

      Von Seel, F. in " Grundlagen der analytischen Chemie, Vol. 82”, ed. By Geier, G., Verlag Chemie, Weinheim, 1970, p. 962.

    92. [92]

      Aravindan, L.; Bicknell, K. A.; Brooks, G.; Khutoryanskiya, V. V.; Williams, A. C. Effect of acyl chain length on transfection efficiency and toxicity of polyethylenimine. Int. J. Pharm. 2009, 378, 201−210  doi: 10.1016/j.ijpharm.2009.05.052

    93. [93]

      Benns, J. M.; Choi, J. S.; Mahato, R. I.; Park, J. S.; Kim, S. W. pH-sensitive cationic polymer gene delivery vehicle: N-Ac-poly(L-histidine)-graft-poly(L-lysine) comb shaped polymer. Bioconj. Chem. 2000, 11, 637−645  doi: 10.1021/bc0000177

    94. [94]

      Fernandez, L. Solubilization and release properties of dendrimers evaluation as prospective drug delivery systems. J. Supramol. Chem. 2006, 18, 633−643  doi: 10.1080/10610270601012776

    95. [95]

      Santo, M.; Fox, M. A. Hydrogen bonding interactions between Starburst dendrimers and several molecules of biological interest. Phys. Org. Chem. 1999, 12, 293−307  doi: 10.1002/(ISSN)1099-1395

    96. [96]

      Cheng, Y.; Xu, Z.; Ma, M.; Xu, T. Dendrimers as drug carriers: applications in different routes of drug administration. J. Pharm. Sci. 2008, 97, 123−143  doi: 10.1002/jps.21079

    97. [97]

      Milhem, O. M.; Myles, C.; McKeown, N. B.; Attwood, D.; D’Emanuele, A. Polyamidoamine Starburst dendrimers as solubility enhancers. Int. J. Pharm. 2000, 197, 239−241  doi: 10.1016/S0378-5173(99)00463-9

    98. [98]

      Kolhe, P.; Misra, E.; Kannan, R. M.; Kannan, S.; Lieh-Lai, M. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int. J. Pharm. 2003, 259, 143−160  doi: 10.1016/S0378-5173(03)00225-4

    99. [99]

      Twyman, L. J.; Beezer, A. E.; Esfand, R.; Hardy, M. J.; Mitchell, J. C. The synthesis of water soluble dendrimers, and their application as possible drug delivery systems. Tetrahedron Lett. 1999, 40, 1743−1746  doi: 10.1016/S0040-4039(98)02680-X

    100. [100]

      Alfei, S.; Castellaro, S.; Taptue, G. B. Synthesis and NMR characterization of dendrimers based on 2, 2-bis-(hydroxymethyl)-propanoic acid (bis-HMPA) containing peripheral amino acid residues for gene transfection. Org. Commun. 2017, 10, 144−177  doi: 10.25135/acg.oc.

    101. [101]

      Seebacher, W.; Simic, N.; Weis, R.; Saf, R.; Kunert, O. Spectral assignments and reference data. Magn. Reson. Chem. 2003, 41, 636−638  doi: 10.1002/(ISSN)1097-458X

    102. [102]

      Eichman, J. D.; Bielinska, A. S. U.; Kukowska-Latallo, J. F.; Baker J. R. Jr. The use of PA-MAM dendrimers in the efficient transfer of genetic material into cells. Sci. Technol. Today 2000, 3, 232−245  doi: 10.1016/S1461-5347(00)00273-X

    103. [103]

      Wang, J. Q.; Mao, W. W.; Lock, L. L.; Tang, J. B.; Sui, M. H.; Sun, W. L.; Cui, H. G.; Xu, D.; Shen, Y. Q. The role of micelle size in tumor accumulation, penetration, and treatment. ACS Nano 2015, 9, 7195−7206  doi: 10.1021/acsnano.5b02017

    104. [104]

      Yu, H.; Cui, Z.; Yu, P.; Guo, C.; Feng, B.; Jiang, T.; Wang, S.; Yin, Q.; Zhong, D.; Yang, X.; Zhang, Z.; Li, Y. pH- and NIR light-responsive micelles with hyperthermia-triggered tumor penetration and cytoplasm drug release to reverse doxorubicin resistance in breast cancer. Adv. Funct. Mater. 2015, 25, 2489−2500  doi: 10.1002/adfm.201404484

  • 加载中
    1. [1]

      Qihan LinJiabin XingYue-Yang LiuGang WuShi-Jia LiuHui WangWei ZhouZhan-Ting LiDan-Wei ZhangtaBOX: A water-soluble tetraanionic rectangular molecular container for conjugated molecules and taste masking for berberine and palmatine. Chinese Chemical Letters, 2024, 35(5): 109119-. doi: 10.1016/j.cclet.2023.109119

    2. [2]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    3. [3]

      Lixian FuYiyun TanYue DingWeixia QingYong Wang . Water–soluble and polarity–sensitive near–infrared fluorescent probe for long–time specific cancer cell membranes imaging and C. Elegans label. Chinese Chemical Letters, 2024, 35(4): 108886-. doi: 10.1016/j.cclet.2023.108886

    4. [4]

      Xinzhi Ding Chong Liu Jing Niu Nan Chen Shutao Xu Yingxu Wei Zhongmin Liu . Solid-state NMR study of the stability of MOR framework aluminum. Chinese Journal of Structural Chemistry, 2024, 43(4): 100247-100247. doi: 10.1016/j.cjsc.2024.100247

    5. [5]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    6. [6]

      Chuan-Zhi NiRuo-Ming LiFang-Qi ZhangQu-Ao-Wei LiYuan-Yuan ZhuJie ZengShuang-Xi Gu . A chiral fluorescent probe for molecular recognition of basic amino acids in solutions and cells. Chinese Chemical Letters, 2024, 35(10): 109862-. doi: 10.1016/j.cclet.2024.109862

    7. [7]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    8. [8]

      Ling-Hao ZhaoHai-Wei YanJian-Shuang JiangXu ZhangXiang YuanYa-Nan YangPei-Cheng Zhang . Effective assignment of positional isomers in dimeric shikonin and its analogs by 1H NMR spectroscopy. Chinese Chemical Letters, 2024, 35(5): 108863-. doi: 10.1016/j.cclet.2023.108863

    9. [9]

      Jiahui LiQiao ShiYing XueMingde ZhengLong LiuTuoyu GengDaoqing GongMinmeng Zhao . The effects of in ovo feeding of selenized glucose on liver selenium concentration and antioxidant capacity in neonatal broilers. Chinese Chemical Letters, 2024, 35(6): 109239-. doi: 10.1016/j.cclet.2023.109239

    10. [10]

      Ting LiXinxin ZhengLejing QuYuanyuan OuSai QiaoXue ZhaoYajun ZhangXinfeng ZhaoQian Li . A chromatographic method for pursuing potential GPCR ligands with the capacity to characterize their intrinsic activities of regulating downstream signaling pathway. Chinese Chemical Letters, 2024, 35(10): 109792-. doi: 10.1016/j.cclet.2024.109792

    11. [11]

      Yunfei Shen Long Chen . Gradient imprinted Zn metal anodes assist dendrites-free at high current density/capacity. Chinese Journal of Structural Chemistry, 2024, 43(10): 100321-100321. doi: 10.1016/j.cjsc.2024.100321

    12. [12]

      Zhen DaiLinzhi TanYeyu SuKerui ZhaoYushun TianYu LiuTao Liu . Site-specific incorporation of reduction-controlled guest amino acids into proteins for cucurbituril recognition. Chinese Chemical Letters, 2024, 35(5): 109121-. doi: 10.1016/j.cclet.2023.109121

    13. [13]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    14. [14]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    15. [15]

      Yiyue DingQiuxiang ZhangLei ZhangQilu YaoGang FengZhang-Hui Lu . Exceptional activity of amino-modified rGO-immobilized PdAu nanoclusters for visible light-promoted dehydrogenation of formic acid. Chinese Chemical Letters, 2024, 35(7): 109593-. doi: 10.1016/j.cclet.2024.109593

    16. [16]

      Rongxin ZhuShengsheng YuXuanzong YangRuyu ZhuHui LiuKaikai NiuLingbao Xing . Construction of pyrene-based hydrogen-bonded organic frameworks as photocatalysts for photooxidation of styrene in water. Chinese Chemical Letters, 2024, 35(10): 109539-. doi: 10.1016/j.cclet.2024.109539

    17. [17]

      Fang-Yuan ChenWen-Chao GengKang CaiDong-Sheng Guo . Molecular recognition of cyclophanes in water. Chinese Chemical Letters, 2024, 35(5): 109161-. doi: 10.1016/j.cclet.2023.109161

    18. [18]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    19. [19]

      Kun Tang Yu-Wu Zhong . Water reduction by an organic single-chromophore photocatalyst. Chinese Journal of Structural Chemistry, 2024, 43(8): 100376-100376. doi: 10.1016/j.cjsc.2024.100376

    20. [20]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

Metrics
  • PDF Downloads(0)
  • Abstract views(736)
  • HTML views(5)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return