Citation: Jian-Te Dong, Wei-Ke Zou, Feng Chen, Qian Zhao. A Soft Shape Memory Reversible Dry Adhesive[J]. Chinese Journal of Polymer Science, ;2018, 36(8): 953-959. doi: 10.1007/s10118-018-2119-6 shu

A Soft Shape Memory Reversible Dry Adhesive

  • Corresponding author: Qian Zhao, qianzhao@zju.edu.cn
  • Received Date: 17 November 2017
    Revised Date: 17 November 2017
    Accepted Date: 5 February 2018
    Available Online: 26 March 2018

  • Transfer printing is a critical procedure for manufacturing stretchable electronics. During such a procedure, stamps are utilized to transfer micro devices from silicon wafers to stretchable polymeric substrates. In addition to conventional silicone rubber stamps, epoxy resin based shape memory stamps have been developed and the transfer yield is thus significantly promoted. However, elastic modulus of the epoxy stamps is too high at both glassy and rubbery states, which may break the brittle micro devices during the adhesion process under mechanical pressure. In this work, we synthesized a copolymer of butyl acrylate (BA) and polycaprolactone diacrylate (PCLDA) as a soft reversible dry adhesive enabling a shape memory capability based on crystalline transition of polycaprolactone (PCL) segments. For the sample containing 40 wt% BA and 60 wt% PCLDA, Young’s modulus was 8.3 and 0.9 MPa respectively below and above the thermal transition temperature, which was much lower than that of the epoxy adhesive. On the other hand, the soft material still provided nearly ideal shape memory fixity and recovery ratios. Subsequently, shape memory surface with cone-shaped microstructure was prepared, which enabled a heating induced strong-to-weak adhesion transition when the microstructure recovered from a pressed temporary morphology to the permanent cone-shaped morphology. Such a soft reversible dry adhesive may contribute to large-scale and automated transfer printing processing.
  • 加载中
    1. [1]

      Tsutsui, T.; Fujita, K. The shift from " hard” to " soft” electronics. Adv. Mater. 2002, 14(13-14), 949−952  doi: 10.1002/(ISSN)1521-4095

    2. [2]

      Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwödiauer, R.; Graz, I.; Bauer-Gogonea, S.; Bauer, S.; Someya, T. An ultra-lightweight design for imperceptible plastic electronics. Nature 2013, 499(7459), 458−463  doi: 10.1038/nature12314

    3. [3]

      Kim, D. H.; Xiao, J.; Song, J.; Huang, Y.; Rogers, J. A. Stretchable, curvilinear electronics based on inorganic materials. Adv. Mater. 2010, 22(19), 2108−2124  doi: 10.1002/adma.v22:19

    4. [4]

      Kim, D. H.; Rogers, J. A. Stretchable electronics: materials strategies and devices. Adv. Mater. 2008, 20(24), 4887−4892  doi: 10.1002/adma.v20:24

    5. [5]

      Rogers, J. A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2010, 327(5973), 1603−1607  doi: 10.1126/science.1182383

    6. [6]

      Carlson, A.; Bowen, A. M.; Huang, Y.; Nuzzo, R. G.; Rogers, J. A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 2012, 24(39), 5284−5318  doi: 10.1002/adma.201201386

    7. [7]

      Yang, H.; Zhao, D.; Chuwongin, S.; Seo, J. H.; Yang, W.; Shuai, Y.; Berggren, J.; Hammar, M.; Ma, Z.; Zhou, W. Transfer-printed stacked nanomembrane lasers on silicon. Nat. Photon. 2012, 6(9), 615−620  doi: 10.1038/nphoton.2012.160

    8. [8]

      Meitl, M. A.; Zhu, Z.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y.; Adesida, I.; Nuzzo, G. R.; Rogers, J. A. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 2006, 5(1), 33−38  doi: 10.1038/nmat1532

    9. [9]

      Xie, T.; Xiao, X. Self-peeling reversible dry adhesive system. Chem. Mater. 2008, 20(9), 2866−2868  doi: 10.1021/cm800173c

    10. [10]

      Wang, R.; Xiao, X.; Xie, T. Viscoelastic behavior and force nature of thermo-reversible epoxy dry adhesives. Macromol. Rapid Commun. 2010, 31(3), 295−299  doi: 10.1002/marc.v31:3

    11. [11]

      Xu, H.; Yu, C.; Wang, S.; Malyarchuk, V.; Xie, T.; Rogers, J. A. Deformable, programmable, and shape‐memorizing micro‐optics. Adv. Funct. Mater. 2013, 23(26), 3299−3306  doi: 10.1002/adfm.v23.26

    12. [12]

      Huang, Y.; Zheng, N.; Cheng, Z.; Chen, Y.; Lu, B.; Xie, T.; Feng, X. Direct laser writing-based programmable transfer printing via bioinspired shape memory reversible adhesive. ACS Appl. Mater. Interfaces 2016, 8(51), 35628−35633  doi: 10.1021/acsami.6b11696

    13. [13]

      Zhao, Q.; Qi, H. J.; Xie, T. Recent progress in shape memory polymer: new behavior, enabling materials, and mechanistic understanding. Prog. Polym. Sci. 2015, 49-50, 79−120  doi: 10.1016/j.progpolymsci.2015.04.001

    14. [14]

      Leng, J.; Lan, X.; Liu, Y.; Du, S. Shape-memory polymers and their composites: stimulus methods and applications. Prog. Mater. Sci. 2011, 56(7), 1077−1135  doi: 10.1016/j.pmatsci.2011.03.001

    15. [15]

      Gu, S. Y.; Gao, X. F.; Jin, S. P.; Liu, Y. L. Biodegradable shape memory polyurethanes with controllable trigger temperature. Chinese J. Polym. Sci. 2016, 34(6), 720−729  doi: 10.1007/s10118-016-1795-3

    16. [16]

      Liao, J. X.; Huang, J. H.; Wang, T., Sun; W. X.; Tong, Z. Rapid shape memory and pH-modulated spontaneous actuation of dopamine containing hydrogels. Chinese J. Polym. Sci. 2017, 35(10), 1297−1306  doi: 10.1007/s10118-017-1991-9

    17. [17]

      Eisenhaure, J. D.; Xie, T.; Varghese, S.; Kim, S. Microstructured shape memory polymer surfaces with reversible dry adhesion. ACS Appl. Mater. Interfaces 2013, 5(16), 7714−7717  doi: 10.1021/am402479f

    18. [18]

      Xie, T.; Rousseau, I. A. Facile tailoring of thermal transition temperatures of epoxy shape memory polymers. Polymer 2009, 50, 1852−1856  doi: 10.1016/j.polymer.2009.02.035

    19. [19]

      Zheng, N.; Fang, G.; Cao, Z.; Zhao, Q.; Xie, T. High strain epoxy shape memory polymer. Polym. Chem. 2015, 6, 3046−3053  doi: 10.1039/C5PY00172B

    20. [20]

      Zhao, R.; Zhao, T.; Jiang, X.; Liu, X.; Shi, D.; Liu, C.; Yang, S.; Chen, E. Thermoplastic high strain multishape memory polymer: side-chain polynorbornene with columnar liquid crystalline phase. Adv. Mater. 2017, 29(12), 1605908

    21. [21]

      Zhang, G.; Zhao, Q.; Zou, W.; Luo, Y.; Xie, T. Unusual aspects of supramolecular networks: plasticity to elasticity, ultrasoft shape memory, and dynamic mechanical properties. Adv. Funct. Mater. 2016, 26(6), 931−937  doi: 10.1002/adfm.v26.6

    22. [22]

      Lendlein, A.; Schmidt, A. M.; Langer, R. AB-polymer networks based on oligo (ε-caprolactone) segments showing shape-memory properties. Proc. Natl. Acad. Sci. 2001, 98(3), 842−847  doi: 10.1073/pnas.031571398

    23. [23]

      Saatchi, M.; Behl, M.; Nöchel, U.; Lendlein, A. Copolymer networks from oligo (ε-caprolactone) and n‐butyl acrylate enable a reversible bidirectional shape‐memory effect at human body temperature. Macromol. Rapid Commun. 2015, 36(10), 880−884  doi: 10.1002/marc.v36.10

    24. [24]

      Kweon, H.; Yoo, M. K.; Park, I. K.; Kim, T. H.; Lee, H. C.; Lee, H. S.; Oh, J. S.; Akaike, T.; Cho, C. S. A novel degradable polycaprolactone networks for tissue engineering. Biomaterials 2003, 24(5), 801−808  doi: 10.1016/S0142-9612(02)00370-8

  • 加载中
    1. [1]

      Fengyao CuiQiaona ZhangTangxin XiaoZhouyu WangLeyong Wang . Reversible phosphorescence in pseudopolyrotaxane elastomer. Chinese Chemical Letters, 2024, 35(10): 110061-. doi: 10.1016/j.cclet.2024.110061

    2. [2]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    3. [3]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    4. [4]

      Jie ZhouQuanyu LiXiaomeng HuWeifeng WeiXiaobo JiGuichao KuangLiangjun ZhouLibao ChenYuejiao Chen . Water molecules regulation for reversible Zn anode in aqueous zinc ion battery: Mini-review. Chinese Chemical Letters, 2024, 35(8): 109143-. doi: 10.1016/j.cclet.2023.109143

    5. [5]

      Guoxing LiuYixin LiChangming TianYongmei XiaoLijie LiuZhanqi CaoSong JiangXin ZhengCaoyuan NiuYun-Lai RenLiangru YangXianfu ZhengYong Chen . Highly reversible photomodulated hydrosoluble stiff-stilbene supramolecular luminophor induced by cucurbituril. Chinese Chemical Letters, 2024, 35(8): 109403-. doi: 10.1016/j.cclet.2023.109403

    6. [6]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    7. [7]

      Lishan XiongXinyuan LiXiaojie LuZhendong ZhangYan ZhangWen WuChenhui Wang . Inhaled multilevel size-tunable, charge-reversible and mucus-traversing composite microspheres as trojan horse: Enhancing lung deposition and tumor penetration. Chinese Chemical Letters, 2024, 35(9): 109384-. doi: 10.1016/j.cclet.2023.109384

    8. [8]

      Zixu XiePengfei ZhangZiyao ZhangChen ChenXing Wang . The choice of antimicrobial polymers: Hydrophilic or hydrophobic?. Chinese Chemical Letters, 2024, 35(9): 109768-. doi: 10.1016/j.cclet.2024.109768

    9. [9]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    10. [10]

      Pengcheng SuShizheng ChenZhihong YangNingning ZhongChenzi JiangWanbin Li . Vapor-phase postsynthetic amination of hypercrosslinked polymers for efficient iodine capture. Chinese Chemical Letters, 2024, 35(9): 109357-. doi: 10.1016/j.cclet.2023.109357

    11. [11]

      Zhenzhong MEIHongyu WANGXiuqi KANGYongliang SHAOJinzhong GU . Syntheses and catalytic performances of three coordination polymers with tetracarboxylate ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1795-1802. doi: 10.11862/CJIC.20240081

    12. [12]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    13. [13]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    14. [14]

      Fangzhou WangWentong GaoChenghui Li . A weak but inert hindered urethane bond for high-performance dynamic polyurethane polymers. Chinese Chemical Letters, 2024, 35(5): 109305-. doi: 10.1016/j.cclet.2023.109305

    15. [15]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    16. [16]

      Hang ChenChengzhi CuiHebo YeHanxun ZouLei You . Enhancing hydrolytic stability of dynamic imine bonds and polymers in acidic media with internal protecting groups. Chinese Chemical Letters, 2024, 35(5): 109145-. doi: 10.1016/j.cclet.2023.109145

    17. [17]

      Lang GaoCen ZhouRui WangFeng LanBohang AnXiaozhou HuangXiao Zhang . Unveiling inverse vulcanized polymers as metal-free, visible-light-driven photocatalysts for cross-coupling reactions. Chinese Chemical Letters, 2024, 35(4): 108832-. doi: 10.1016/j.cclet.2023.108832

    18. [18]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    19. [19]

      Yue Mao Zhonghang Chen Tiankai Sun Wenyue Cui Peng Cheng Wei Shi . Luminescent coordination polymers with mixed carboxylate and triazole ligands for rapid detection of chloroprene metabolite. Chinese Journal of Structural Chemistry, 2024, 43(9): 100353-100353. doi: 10.1016/j.cjsc.2024.100353

    20. [20]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

Metrics
  • PDF Downloads(0)
  • Abstract views(626)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return