Citation: Lu Chen, Hui-Hui Cheng, Jiang Xiong, Ya-Ting Zhu, Hong-Peng Zhang, Xi Xiong, Yu-Man Liu, Jian Yu, Zhao-Xia Guo. Improved Mechanical Properties of Poly(butylene succinate) Membrane by Co-electrospinning with Gelatin[J]. Chinese Journal of Polymer Science, ;2018, 36(9): 1063-1069. doi: 10.1007/s10118-018-2112-0 shu

Improved Mechanical Properties of Poly(butylene succinate) Membrane by Co-electrospinning with Gelatin

  • Corresponding author: Zhao-Xia Guo, guozx@mail.tsinghua.edu.cn
  • Received Date: 23 November 2017
    Accepted Date: 16 January 2018
    Available Online: 13 March 2018

  • Gelatin, a natural proteinous polymer, was used to co-electrospin with poly(butylene succinate) (PBS) in order to improve the mechanical properties of PBS membrane and facilitate its applications in biomedical field. The PBS/gelatin blend membranes have narrower distribution of fiber diameter and smoother surface than neat PBS membrane. The contact angles, water absorption rates and water uptakes of the PBS/gelatin blend membranes were measured, showing increased hydrophilicity. The interaction between PBS and gelatin was investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and differential scanning calorimetry (DSC). The mechanical properties of PBS/gelatin blend membranes in both dry and wet states were evaluated by uniaxial tensile tests. In the dry state, the PBS/gelatin blend membrane containing 10% gelatin has a 3-times increase in tensile strength without any adverse effect on ductility because of the existence of interaction between the two blend components, little change in crystallinity of PBS, and possible interaction between any adjacent fibers; the tensile strength and elongation at break are even better in the wet state attributed to some gelatin on fiber surfaces, which act as a binder in the presence of water. The potential applications of PBS/gelatin blend membranes were demonstrated by successful immobilization of thrombin, a clinically-used hemostatic drug. The thrombin-loaded membrane could be used for rapid hemostasis.
  • 加载中
    1. [1]

      Li, H.; Chang, J.; Cao, A.; Wang, J. In vitro evaluation of biodegradable poly(butylene succinate) as a novel biomaterial. Macromol. Biosci. 2005, 5(5), 433−440  doi: 10.1002/(ISSN)1616-5195

    2. [2]

      Jeong, E. H.; Im, S. S.; Youk, J. H. Electrospinning and structural characterization of ultrafine poly(butylene succinate) fibers. Polymer 2005, 46(23), 9538−9543  doi: 10.1016/j.polymer.2005.07.100

    3. [3]

      Xu, J.; Guo, B. H. Poly(butylene succinate) and its copolymers: Research, development and industrialization. Biotechnol. J. 2010, 5(11), 1149−1163  doi: 10.1002/biot.v5.11

    4. [4]

      Wang, X. W.; Zhang, C. A.; Wang, P. L.; Zhao, J.; Zhang, W.; Ji, J. H.; Hua, K.; Zhou, J.; Yang, X. B.; Li, X. P. Enhanced performance of biodegradable poly(butylene succinate)/ graphene oxide nanocomposites via in situ polymerization. Langmuir 2012, 28(18), 7091−7095  doi: 10.1021/la204894h

    5. [5]

      Tian, L.; Wang, P.; Zhao, Z.; Ji, J. Antimicrobial activity of electrospun poly(butylenes succinate) fiber mats containing PVP-capped silver nanoparticles. Appl. Biochem. Biotechnol. 2013, 171(7), 1890−1899  doi: 10.1007/s12010-013-0461-2

    6. [6]

      Kimble, L. D.; Bhattacharyya, D. In vitro degradation effects on strength, stiffness, and creep of PLLA/PBS: a potential stent material. Int. J. Polym. Mater. Polym. Biomater. 2015, 64(6), 299−310  doi: 10.1080/00914037.2014.945203

    7. [7]

      Liu, Y.; He, J. H.; Yu, J. Y. Preparation and morphology of poly(butylene succinate) nanofibers via electrospinning. Fibres Text. East. Eur. 2007, 15(4), 30−33

    8. [8]

      San. Z. X.; Li. C. J. Study on soakage control of PBS nanofibers by electrospinning. New Chem. Mater 2007, 35(2), 63−65

    9. [9]

      Su, Z.; Ding, J.; Wei, G. Electrospinning: a facile technique for fabricating polymeric nanofibers doped with carbon nanotubes and metallic nanoparticles for sensor applications. RSC Adv 2014, 4(94), 52598−52610  doi: 10.1039/C4RA07848A

    10. [10]

      Zhang, M.; Zhao, X.; Zhang, G.; Wei, G.; Su, Z. Electrospinning design of functional nanostructures for biosensor applications. J. Mater. Chem. B 2017, 5(9), 1699−1711  doi: 10.1039/C6TB03121H

    11. [11]

      Abrigo, M.; McArthur, S. L.; Kingshott, P. Electrospun nanofibers as dressings for chronic wound care: advances, challenges, and future prospects. Macromol. Biosci. 2014, 14(6), 772−792  doi: 10.1002/mabi.201300561

    12. [12]

      Hu, X.; Liu, S.; Zhou, G.; Huang, Y.; Xie, Z.; Jing, X. Electrospinning of polymeric nanofibers for drug delivery applications. J. Control. Release 2014, 185(27), 12−21

    13. [13]

      Wang, Z. G.; Wan, L. S.; Liu, Z. M.; Huang, X. J.; Xu, Z. K. Enzyme immobilization on electrospun polymer nanofibers: an overview. J. Mol. Catal. B Enzym. 2009, 56(4), 189−195  doi: 10.1016/j.molcatb.2008.05.005

    14. [14]

      Rieger, K. A.; Birch, N. P.; Schiffman, J. D. Designing electrospun nanofiber mats to promote wound healing—a review. J. Mater. Chem. B 2013, 1(36), 4531−4541  doi: 10.1039/c3tb20795a

    15. [15]

      Liu, Y. M.; Li, Q.; Liu, H. H.; Cheng, H. H.; Yu, J.; Guo, Z. X. Antibacterial thermoplastic polyurethane electrospun fiber mats prepared by 3-aminopropyltriethoxysilane-assisted adsorption of Ag nanoparticles. Chinese J. Polym. Sci. 2017, 35(6), 713−720  doi: 10.1007/s10118-017-1928-3

    16. [16]

      Liu, H. H.; Li, Q.; Liang, X.; Xiong, X.; Yu, J.; Guo, Z. X. Antibacterial polycaprolactone electrospun fiber mats prepared by soluble eggshell membrane protein–assisted adsorption of silver nanoparticles. J. Appl. Polym. Sci. 2016, 133(35), 43850  doi: 10.1002/app.43850

    17. [17]

      Ma, L. C.; Wang, J. N.; Li, L.; Li, C. J. Preparation of PET/CTS antibacterial composites nanofiber membranes Used for air filter by electrospinning. Acta Polymerica Sinica (in Chinese) 2015, (2), 221−227

    18. [18]

      Xu, T.; Yang, H. Y.; Yang, D. Z.; Yu, Z. Z. Polylactic acid nanofiber scaffold decorated with chitosan islandlike topography for bone tissue engineering. ACS Appl. Mater. Interfaces 2017, 9(25), 21094−21104  doi: 10.1021/acsami.7b01176

    19. [19]

      Arras, M. M. L.; Jana, R.; Mühlstädt, M.; Maenz, S.; Andrews, J.; Su, Z.; Grasl, C.; Jandt, K. D. In situ formation of nanohybrid shish-kebabs during electrospinning for the creation of hierarchical shish-kebab structures. Macromolecules 2016, 49(9), 3550−3558  doi: 10.1021/acs.macromol.6b00153

    20. [20]

      Cheng, H. H.; Xiong, J.; Xie, Z. N.; Zhu, Y. T.; Liu, Y. M.; Wu, Z. Y.; Yu, J.; Guo, Z. X. Thrombin-loaded poly(butylene succinate)-based electrospun membranes for rapid hemostatic application. Macromol. Mater. Eng. DOI: 10.1002/mame.201700395.

    21. [21]

      Li, Y.; Zhang, P.; Ouyang, Z.; Zhang, M.; Lin, Z.; Li, J.; Su, Z.; Wei, G. Nanoscale graphene doped with highly dispersed silver nanoparticles: quick synthesis, facile fabrication of 3D membrane-modifi ed electrode, and super performance for electrochemical sensing. Adv. Funct. Mater. 2016, 26, 2122−2134  doi: 10.1002/adfm.201504533

    22. [22]

      Zhang, P.; Zhao, X.; Ji, Y.; Ouyang, Z.; Wen, X.; Li, J.; Su, Z.; Wei, G. Electrospinning graphene quantum dots into a nanofibrous membrane for dual-purpose fluorescent and electrochemical biosensors. J. Mater. Chem. B 2015, 3, 2487−2496  doi: 10.1039/C4TB02092H

    23. [23]

      Su, Z.; Li, J.; Ouyang, Z.; Matthias, M. L. A.; Wei, G.; Klaus, D. Biomimetic 3D hydroxyapatite architectures with interconnected pores based on electrospun biaxially orientated PCL nanofibers. RSC Adv 2014, 4, 14833−14839  doi: 10.1039/C3RA46457A

    24. [24]

      Li, X.; Xie, J.; Yuan, X.; Xia, Y. Coating electrospun poly(ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir 2008, 24(24), 14145−14150  doi: 10.1021/la802984a

    25. [25]

      Shi, R.; Geng, H.; Gong, M.; Ye, J.; Wu, C.; Hu, X.; Zhang, L. Long-acting and broad-spectrum antimicrobial electrospun poly(ε-caprolactone)/gelatin micro/nanofibers for wound dressing. J. Colloid Interface Sci. 2018, 509, 275−284  doi: 10.1016/j.jcis.2017.08.092

    26. [26]

      Behrens, A. M.; Sikorski, M. J.; Kofinas, P. Hemostatic strategies for traumatic and surgical bleeding. J. Biomed. Mater. Res. A 2014, 102(11), 4182−4194  doi: 10.1002/jbm.a.v102.11

    27. [27]

      Hwang, P. T. J.; Murdock, K.; Alexander, G. C.; Salaam, A. D.; Ng, J. I.; Lim, D. J.; Dean, D.; Jun, H. W. Poly(ε-caprolactone)/gelatin composite electrospun scaffolds with porous crater-like structures for tissue engineering. J. Biomed. Mater. Res. A 2016, 104(4), 1017−1029  doi: 10.1002/jbma.v104.4

    28. [28]

      Meng, Z. X.; Wang, Y. S.; Ma, C.; Zheng, W.; Li, L.; Zheng, Y. F. Electrospinning of PLGA/gelatin randomly-oriented and aligned nanofibers as potential scaffold in tissue engineering. Mater. Sci. Eng. C 2010, 30(8), 1204−1210  doi: 10.1016/j.msec.2010.06.018

    29. [29]

      Dhandayuthapani, B.; Krishnan, U. M.; Sethuraman, S. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2010, 94(1), 264−272

    30. [30]

      Kim, S. E.; Heo, D. N.; Lee, J. B.; Kim, J. R.; Park, S. H.; Jeon, S. H.; Kwon, I. K. Electrospun gelatin/polyurethane blended nanofibers for wound healing. Biomed. Mater. 2009, 4(4), 044106  doi: 10.1088/1748-6041/4/4/044106

    31. [31]

      Jamadi, E. S.; Ghasemi Mobarakeh, L.; Morshed, M.; Sadeghi, M.; Prabhakaran, M. P.; Ramakrishna, S. Synthesis of polyester urethane urea and fabrication of elastomeric nanofibrous scaffolds for myocardial regeneration. Mater. Sci. Eng. C 2016, 63, 106−116  doi: 10.1016/j.msec.2016.02.051

    32. [32]

      Lee, J.; Tae, G.; Kim, Y. H.; Park, I. S.; Kim, S.H.; Kim, S. H. The effect of gelatin incorporation into electrospun poly(L-lactide-co-ε-caprolactone) fibers on mechanical properties and cytocompatibility. Biomaterials 2008, 29(12), 1872−1879  doi: 10.1016/j.biomaterials.2007.12.029

    33. [33]

      Yan, S.; Xiaoqiang, L.; Shuiping, L.; Hongsheng, W.; Chuanglong, H. Fabrication and properties of PLLA-gelatin nanofibers by electrospinning. J. Appl. Polym. Sci. 2010, 117(1), 542−547

    34. [34]

      Yao, R.; He, J.; Meng, G.; Jiang, B.; Wu, F. Electrospun PCL/gelatin composite fibrous scaffolds: mechanical properties and cellular responses. J. Biomater. Sci. Polym. Ed. 2016, 27(9), 824−838  doi: 10.1080/09205063.2016.1160560

    35. [35]

      Xiong, X.; Li, Q.; Lu, J. W.; Guo, Z. X.; Sun, Z. H.; Yu, J. Fibrous scaffolds made by co-electrospinning soluble eggshell membrane protein with biodegradable synthetic polymers. J. Biomater. Sci.-Polym. Ed. 2012, 23(9), 1217−1231

    36. [36]

      Mao, B.; Liu, B.; Wang, Y. F.; Li, G. N.; Song, Y. Z.; Ma, L. P.; Liu, G. H. Preparation of Au colloid of small size in aqueous solution. Rare Met. Mater. Eng. 2009, 38(3), 515−518

    37. [37]

      Zhang, X. C.; Xiong, X.; Yu, J.; Guo, Z. X. Amine-functionalized thermoplastic polyurethane electrospun fibers prepared by co-electrospinning with 3-aminopropyltriethoxysilane and preparation of conductive fiber mats. Polymer 2012, 53(22), 5190−5196  doi: 10.1016/j.polymer.2012.09.015

    38. [38]

      Cheng, H. H.; Chen, F.; Yu, J.; Guo, Z. X. Gold-nanoparticle-decorated thermoplastic polyurethane electrospun fibers prepared through a chitosan linkage for catalytic applications. J. Appl. Polym. Sci. 2016, 133, 44336  doi: 10.1002/APP.44336

    39. [39]

      Xiong, X.; Li, Q.; Zhang, X. C.; Yu, J.; Guo, Z. X. Preparation, characterization and application of amine-functionalized poly(lactic acid) electrospun fibers. Chem. J. Chinese Universities 2014, 35(6), 1323−1329

    40. [40]

      Rong, J.; Liang, M.; Xuan, F.; Sun, J.; Zhao, L.; Zhen, H.; Tian, X.; Liu, D.; Zhang, Q.; Peng, C.; Yao, T.; Li, F.; Wang, X.; Han, Y.; Yu, W. Alginate-calcium microsphere loaded with thrombin: A new composite biomaterial for hemostatic embolization. Int. J. Biol. Macromol. 2015, 75, 479−488  doi: 10.1016/j.ijbiomac.2014.12.043

  • 加载中
    1. [1]

      Xinyu RenHong LiuJingang WangJiayuan Yu . Electrospinning-derived functional carbon-based materials for energy conversion and storage. Chinese Chemical Letters, 2024, 35(6): 109282-. doi: 10.1016/j.cclet.2023.109282

    2. [2]

      Guangyao WangZhitong XuYe QiYueguang FangGuiling NingJunwei Ye . Electrospun nanofibrous membranes with antimicrobial activity for air filtration. Chinese Chemical Letters, 2024, 35(10): 109503-. doi: 10.1016/j.cclet.2024.109503

    3. [3]

      Wei Huang Weiwei Chen Yongxing Tang . Green Mountains and Blue Waters Spanning Nine Centuries: Decrypting “The Picture of a Thousand Miles of Rivers and Mountains” from a Chemical Perspective. University Chemistry, 2024, 39(9): 189-195. doi: 10.12461/PKU.DXHX202312075

    4. [4]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    5. [5]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    6. [6]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    7. [7]

      Wenzhong ZhangZirui YanLingcheng ChenYi Xiao . Sn-fused perylene diimides: Synthesis, mechanism, and properties. Chinese Chemical Letters, 2024, 35(10): 109582-. doi: 10.1016/j.cclet.2024.109582

    8. [8]

      Shuwen SUNGaofeng WANG . Two cadmium coordination polymers constructed by varying Ⅴ-shaped co-ligands: Syntheses, structures, and fluorescence properties. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 613-620. doi: 10.11862/CJIC.20230368

    9. [9]

      Yanbing ShenYuan YuanYaxin WangXiaonan MaWensheng YangYulan Chen . Dihydroanthracene bridged bis-naphthopyrans: A multimodal chromophore with mechano- and photo-chromic properties. Chinese Chemical Letters, 2024, 35(5): 108949-. doi: 10.1016/j.cclet.2023.108949

    10. [10]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    11. [11]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    12. [12]

      Huirong LIUHao XUDunru ZHUJunyong ZHANGChunhua GONGJingli XIE . Syntheses, structures, photochromic and photocatalytic properties of two viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1368-1376. doi: 10.11862/CJIC.20240066

    13. [13]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    14. [14]

      Tiantian Gong Yanan Chen Shuo Wang Miao Wang Junwei Zhao . Rigid-flexible-ligand-ornamented lanthanide-incorporated selenotungstates and photoluminescence properties. Chinese Journal of Structural Chemistry, 2024, 43(9): 100370-100370. doi: 10.1016/j.cjsc.2024.100370

    15. [15]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    16. [16]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    17. [17]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    18. [18]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    19. [19]

      Shunshun JiangJi ZhangJing WangShan-Tao Zhang . Excellent energy storage properties in non-stoichiometric Bi0.5Na0.5TiO3-based relaxor ferroelectric ceramics. Chinese Chemical Letters, 2024, 35(7): 108955-. doi: 10.1016/j.cclet.2023.108955

    20. [20]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

Metrics
  • PDF Downloads(0)
  • Abstract views(623)
  • HTML views(12)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return