Citation: Ying Liu, Jia-Qing Zhao, Wen-Jian Sun, Yu-Kun Huang, Su-Jie Chen, Xiao-Jun Guo, Qing Zhang. A Facile Photo-cross-linking Method for Polymer Gate Dielectrics and Their Applications in Fully Solution Processed Low Voltage Organic Field-effect Transistors on Plastic Substrate[J]. Chinese Journal of Polymer Science, ;2018, 36(8): 918-924. doi: 10.1007/s10118-018-2110-2 shu

A Facile Photo-cross-linking Method for Polymer Gate Dielectrics and Their Applications in Fully Solution Processed Low Voltage Organic Field-effect Transistors on Plastic Substrate

  • Corresponding author: Xiao-Jun Guo, x.guo@sjtu.edu.cn Qing Zhang, qz14@sjtu.edu.cn
  • These two authors contributed equally to this work.
  • Received Date: 19 December 2017
    Accepted Date: 14 January 2018
    Available Online: 9 March 2018

  • A simple and effective photochemical method was developed for cross-linking of polymer gate dielectrics. Laborious synthetic processes for functionalizing polymer dielectrics with photo-cross-linkable groups were avoided. The photo-cross-linker, BBP-4, was added into host polymers by simple solution blending process, which was capable of abstracting hydrogen atoms from polymers containing active C―H groups upon exposure to ultraviolet (UV) radiation. The cross-linking can be completed with a relatively long wavelength UV light (365 nm). The approach has been applied to methacrylate and styrenic polymers such as commercial poly(methylmethacrylate) (PMMA), poly(iso-butylmethacrylate) (PiBMA) and poly(4-methylstyrene) (PMS). The cross-linked networks enhanced dielectric properties and solvent resistance of the thin films. The bottom-gate organic field-effect transistors (OFETs) through all solution processes on plastic substrate were fabricated. The OFET devices showed low voltage operation and steep subthreshold swing at relatively small gate dielectric capacitance.
  • 加载中
    1. [1]

      Rogers, J. A.; Someya, T.; Huang, Y. Materials and mechanics for stretchable electronics. Science 2017, 327, 1603−1607

    2. [2]

      Tee, B. C. K.; Chortos, A.; Berndt, A.; KimNguyen, A.; Tom, A.; McGuire, A.; Lin, Z. C.; Tien, K.; Bae, W. G.; Wang, H.; Ping, M.; Chou, H. H.; Cui, B.; Deisseroth, K.; Ng, T.; Bao, Z. A skin-inspired organic digital mechanoreceptor. Science 2015, 350, 313−316  doi: 10.1126/science.aaa9306

    3. [3]

      Di, C. A.; Zhang, F.; Zhu, D. Multi-functional integration of organic field-effect transistors (OFETs): advances and perspectives. Adv. Mater. 2013, 25, 313−330  doi: 10.1002/adma.201201502

    4. [4]

      Liu, B.; Bao, Y.; Ling, H. F.; Zhu, W. S.; Gong, R. J.; Lin, J. Y.; Xie, L. H.; Yi, M. D.; Huang, W. Fluorinated p-n type copolyfluorene as polymer electret for stable nonvolatile organic transistor memory device. Chinese J. Polym. Sci. 2016, 34, 1183−1195  doi: 10.1007/s10118-016-1826-0

    5. [5]

      Guo, X. J.; Xu, Y.; Ogier, S.; Ng, T. N.; Caironi, M.; Perinot, A.; Li, L.; Zhao, J. Q.; Tang, W.; Sporea, R. A.; Nejim, A.; Carrabina, J.; Cain, P.; Yan, F. Current status and opportunities of organic thin-film transistor technologies. IEEE Trans. Electron Devices 2017, 64, 1906−1921  doi: 10.1109/TED.2017.2677086

    6. [6]

      Veres, J.; Ogier, S.; Lloyd, G.; de Leeuw, D. Gate insulators in organic field-effect transistors. Chem. Mater. 2004, 16, 4543−4555  doi: 10.1021/cm049598q

    7. [7]

      Seong, H.; Baek, J.; Pak, K.; Im, S. G. A surface tailoring method of ultrathin polymer gate dielectrics for organic transistors: improved device performance and the thermal stability thereof. Adv. Funct. Mater. 2015, 25, 4462−4469  doi: 10.1002/adfm.v25.28

    8. [8]

      Arias, A. C.; MacKenzie, J. D.; McCulloch, I.; Salleo, J. R. A. A. Materials and applications for large area electronics: solution-based approaches. Chem. Rev. 2010, 110, 3−24  doi: 10.1021/cr900150b

    9. [9]

      Sun, J.; Zhang, B.; Katz, H. E. Materials for printable, transparent, and low-voltage transistors. Adv. Funct. Mater. 2011, 21, 29−45  doi: 10.1002/adfm.201001530

    10. [10]

      Ortiz, R. P.; Facchetti, A.; Marks, T. J. High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. Chem. Rev. 2010, 110, 205−239  doi: 10.1021/cr9001275

    11. [11]

      Cheng, X. Y.; Caironi, M.; Noh, Y. Y.; Wang, J. P.; Newman, C.; Yan, H.; Facchetti, A.; Sirringhaus, H. Air Stable cross-linked cytop ultrathin gate dielectric for high yield low-voltage top-gate organic field-effect transistors. Chem. Mater. 2010, 22, 1559−1566  doi: 10.1021/cm902929b

    12. [12]

      Jung, S.; Albariqi, M.; Gruntz, G.; Al-Hathal, T.; Peinado, A.; Garcia-Caurel, E.; Nicolas, Y.; Toupance, T.; Bonnassieux, Y.; Horowitz, G. A TIPS-TPDO-tetraCN-Based n-type organic field-effect transistor with a cross-linked PMMA polymer gate dielectric. ACS Appl. Mater. Interfaces 2016, 8, 14701−14708  doi: 10.1021/acsami.6b00480

    13. [13]

      Wang, C.; Lee, W. Y.; Nakajima, R.; Mei, J. G.; Kim, D. H.; Bao, Z. A. Thiol-ene cross-linked polymer gate dielectrics for low-voltage organic thin-film transistors. Chem. Mater. 2013, 25, 4806−4812  doi: 10.1021/cm403203k

    14. [14]

      Li, Y.; Wang, H.; Zhang, C. Y.; Zhang, Y. C.; Cui, Z. C.; Yan, D. H.; Shi, Z. S. Organic thin-film transistors with novel high-k polymers as dielectric layers. Polym. Chem. 2015, 6, 3685−3693  doi: 10.1039/C5PY00221D

    15. [15]

      Hung, C. C.; Wu, H. C.; Chiu, Y. C.; Tung, S. H.; Chen, W. C. Crosslinkable high dielectric constant polymer dielectrics for low voltage organic field-effect transistor memory devices. J. Polym. Sci., Part A: Polym. Chem. 2016, 54, 3224−3236  doi: 10.1002/pola.v54.19

    16. [16]

      Kim, S. H.; Jang, M.; Kim, J.; Choi, H.; Baek, K. Y.; Park, C. E.; Yang, H. Complementary photo and temperature cured polymer dielectrics with high-quality dielectric properties for organic semiconductors. J. Mater. Chem. 2012, 22, 19940−19947  doi: 10.1039/c2jm33203e

    17. [17]

      Lu, C.; Lee, W. Y.; Shih, C. C.; Wen, M. Y.; Chen, W. C. Stretchable polymer dielectrics for low-voltage-driven field-effect transistors. ACS Appl. Mater. Interfaces 2017, 9, 25522−25532  doi: 10.1021/acsami.7b06765

    18. [18]

      Yoon, M. H.; Yan, H.; Facchetti, A.; Marks, T. J. Low-voltage organic field-effect transistors and inverters enabled by ultrathin cross-linked polymers as gate dielectrics. J. Am. Chem. Soc. 2005, 127, 10388−10395  doi: 10.1021/ja052488f

    19. [19]

      Roberts, M. E.; Queralto, N.; Mannsfeld, S. C. B.; Reinecke, B. N.; Knoll, W.; Bao, Z. N. Cross-linked polymer gate dielectric films for low-voltage organic transistors. Chem. Mater. 2009, 21, 2292−2299  doi: 10.1021/cm900637p

    20. [20]

      Han, H. J.; Zhang, S.; Sun, R. Y.; Wu, J. H.; Xie, M. R.; Liao, X. J. Photocrosslinkable polynorbornene-based block copolymers with enhanced dielectric and thermal properties. Chinese J. Polym. Sci. 2016, 34, 378−389  doi: 10.1007/s10118-016-1753-0

    21. [21]

      Berndt, A.; Pospiech, D.; Jehnichen, D.; Haussler, L.; Voit, B.; Al-Hussein, M.; Plotner, M.; Kumar, A.; Fischer, W. J. Methacrylate copolymers with liquid crystalline side chains for organic gate dielectric applications. ACS Appl. Mater. Interfaces 2015, 7, 12339−12347  doi: 10.1021/am5069479

    22. [22]

      Lee, T. W.; Shin, J. H.; Kang, I. N.; Lee, S. Y. photocurable organic gate insulator for the fabrication of high-field effect mobility organic transistors by low temperature and solution processing. Adv. Mater. 2007, 19, 2702−2706  doi: 10.1002/(ISSN)1521-4095

    23. [23]

      Jang, J.; Kim, S. H.; Hwang, J.; Nam, S.; Yang, C.; Chung, D. S.; Park, C. E. Photopatternable ultrathin gate dielectrics for low-voltage-operating organic circuits. Appl. Phys. Lett. 2009, 95, 073302  doi: 10.1063/1.3206665

    24. [24]

      Lee, E. K.; Kim, J. Y.; Chung, J. W.; Lee, B. L.; Kang, Y. Photo-crosslinkable polymer gate dielectrics for hysteresis-free organic field-effect transistors with high solvent resistance. RSC Adv. 2014, 4, 293−300  doi: 10.1039/C3RA43890B

    25. [25]

      Kim, Y.; Roh, J.; Kim, J. H.; Kang, C. M.; Kang, I. N.; Jung, B. J.; Lee, C.; Hwang, D. H. Photocurable propyl-cinnamate-functionalized polyhedral oligomeric silsesquioxane as a gate dielectric for organic thin film transistors. Org. Electron. 2013, 14, 2315−2323  doi: 10.1016/j.orgel.2013.05.030

    26. [26]

      de Col, C.; Nawaz, A.; Cruz-Cruz, I.; Kumar, A.; Kumar, A.; Hümmelgen, I. A. Poly(vinyl alcohol) gate dielectric surface treatment with vitamin C for poly(3-hexylthiophene-2,5-diyl) based field effect transistors performance improvement. Org. Electron. 2015, 17, 22−27  doi: 10.1016/j.orgel.2014.11.015

    27. [27]

      Kim, S. H.; Hong, K.; Jang, M.; Jang, J.; Anthony, J. E.; Yang, H.; Park, C. E. Photo-curable polymer blend dielectrics for advancing organic field-effect transistor applications. Adv. Mater. 2010, 22, 4809−4813  doi: 10.1002/adma.201000904

    28. [28]

      Jang, J.; Nam, S.; Hwang, J.; Park, J. J.; Im, J.; Park, C. E.; Kim, J. M. Photocurable polymer gate dielectrics for cylindrical organic field-effect transistors with high bending stability. J. Mater. Chem. 2012, 22, 1054−1060  doi: 10.1039/C1JM14091D

    29. [29]

      Carbone, N. D.; Ene, M.; Lancaster, J. R.; Koberstein, J. T. Kinetics and mechanisms of radical-based branching/cross-linking reactions in preformed polymers induced by benzophenone and bis-benzophenone photoinitiators. Macromolecules 2013, 46, 5434−5444  doi: 10.1021/ma4007347

    30. [30]

      Katzenstein, J. M.; Kim, C. B.; Prisco, N. A.; Katsumata, R.; Li, Z.; Janes, D. W.; Blachut, G.; Ellison, C. J. A Photochemical approach to directing flow and stabilizing topography in polymer films. Macromolecules 2014, 47, 6804−6812  doi: 10.1021/ma5010698

    31. [31]

      Carroll, G. T.; Sojka, M. E.; Lei, X.; Turro, N. J.; Koberstein, J. T. Photoactive additives for cross-linking polymer films: inhibition of dewetting in thin polymer films. Langmuir 2006, 22, 7748−7754  doi: 10.1021/la0611099

    32. [32]

      Czech, Z.; Kowalczyk, A.; Kabatc, J.; Swiderska, J. Photoreactive UV-crosslinkable solvent-free acrylic pressure-sensitive adhesives containing copolymerizable photoinitiators based on benzophenones. Eur. Polym. J. 2012, 48, 1446−1454  doi: 10.1016/j.eurpolymj.2012.05.010

    33. [33]

      Jang, J. Y.; Kim, S. H.; Nam, S.; Chung, D. S.; Yang, C. W.; Yun, W. M.; Park, C. E.; Koo, J. B. Hysteresis-free organic field-effect transistors and inverters using photocrosslinkable poly(vinyl cinnamate) as a gate dielectric. Appl. Phys. Lett. 2008, 92, 143306  doi: 10.1063/1.2907974

    34. [34]

      Li, Y.; Wang, H.; Zhang, X.; Zhang, Q.; Wang, X.; Cao, D.; Shi, Z.; Yan, D.; Cui, Z. Organic thin film transistors with novel photosensitive polyurethane as dielectric layer. RSC Adv. 2016, 6, 5377−5383  doi: 10.1039/C5RA22970G

    35. [35]

      Kalb, W. L.; Batlogg, B. Calculating the trap density of states in organic field-effect transistors from experiment: A comparison of different methods. Phys. Rev. B 2010, 81, 035327  doi: 10.1103/PhysRevB.81.035327

    36. [36]

      Raghuwanshi, V.; Bharti, D.; Varun, I.; Mahato, A. K.; Tiwari, S. P. Performance enhancement in mechanically stable flexible organic-field effect transistors with TIPS-pentacene:polymer blend. Org. Electron. 2016, 34, 284−288  doi: 10.1016/j.orgel.2016.04.039

  • 加载中
    1. [1]

      Min ChenBoyu PengXuyun GuoYe ZhuHanying Li . Polyethylene interfacial dielectric layer for organic semiconductor single crystal based field-effect transistors. Chinese Chemical Letters, 2024, 35(4): 109051-. doi: 10.1016/j.cclet.2023.109051

    2. [2]

      Zhiwei ZhongYanbin HuangWantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339

    3. [3]

      Zhixiang LiZhirong YangChang YaoBin WuGang QianXuezhi DuanXinggui ZhouJing Zhang . Efficient continuous synthesis of 2-hydroxycarbazole and 4-hydroxycarbazole in a millimeter scale photoreactor. Chinese Chemical Letters, 2024, 35(4): 108893-. doi: 10.1016/j.cclet.2023.108893

    4. [4]

      Yi LiuPeng LeiYang FengShiwei FuXiaoqing LiuSiqi ZhangBin TuChen ChenYifan LiLei WangQing-Dao Zeng . Topologically engineering of π-conjugated macrocycles: Tunable emission and photochemical reaction toward multi-cyclic polymers. Chinese Chemical Letters, 2024, 35(10): 109571-. doi: 10.1016/j.cclet.2024.109571

    5. [5]

      Huaixiang YangMiao-Miao LiAijun ZhangJiefei GuoYongqi YuWei Ding . Visible-light-induced photocatalyst- and metal-free radical phosphinoyloximation of alkenes with tert-butyl nitrite as bifunctional reagent. Chinese Chemical Letters, 2025, 36(3): 110425-. doi: 10.1016/j.cclet.2024.110425

    6. [6]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    7. [7]

      Jing-Jing ZhangLujun LouRui LvJiahui ChenYinlong LiGuangwei WuLingchao CaiSteven H. LiangZhen Chen . Recent advances in photochemistry for positron emission tomography imaging. Chinese Chemical Letters, 2024, 35(8): 109342-. doi: 10.1016/j.cclet.2023.109342

    8. [8]

      Fuzheng ZhangChao ShiJiale LiFulin JiaXinyu LiuFeiyang LiXinyu BaiQiuxia LiAihua YuanGuohua Xie . B-embedded narrowband pure near-infrared (NIR) phosphorescent iridium(Ⅲ) complexes and solution-processed OLED application. Chinese Chemical Letters, 2025, 36(1): 109596-. doi: 10.1016/j.cclet.2024.109596

    9. [9]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    10. [10]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    11. [11]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    12. [12]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    13. [13]

      Shaohua ZhangXiaojuan DaiWei HaoLiyao LiuYingqiao MaYe ZouJia ZhuChong-an Di . A first-principles study of the Nernst effect in doped polymer. Chinese Chemical Letters, 2024, 35(12): 109837-. doi: 10.1016/j.cclet.2024.109837

    14. [14]

      Jianing HeXiao WangZijian WangRuize JiangKe WangRui ZhangHuilin WangBaokang GengHongyi GaoShuyan SongHongjie Zhang . Investigation on Cu promotion effect on Ce-based solid solution-anchored Rh single atoms for three-way catalysis. Chinese Chemical Letters, 2025, 36(2): 109640-. doi: 10.1016/j.cclet.2024.109640

    15. [15]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    16. [16]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    17. [17]

      Fereshte Hassanzadeh-AfruziMina AziziIman ZareEhsan Nazarzadeh ZareAnwarul HasanSiavash IravaniPooyan MakvandiYi Xu . Advanced metal-organic frameworks-polymer platforms for accelerated dermal wound healing. Chinese Chemical Letters, 2024, 35(11): 109564-. doi: 10.1016/j.cclet.2024.109564

    18. [18]

      Ting ShiZiyang SongYaokang LvDazhang ZhuLing MiaoLihua GanMingxian Liu . Hierarchical porous carbon guided by constructing organic-inorganic interpenetrating polymer networks to facilitate performance of zinc hybrid supercapacitors. Chinese Chemical Letters, 2025, 36(1): 109559-. doi: 10.1016/j.cclet.2024.109559

    19. [19]

      Wenbiao ZhangBolong YangZhonghua Xiang . Atomically dispersed Cu-based metal-organic framework directly for alkaline polymer electrolyte fuel cells. Chinese Chemical Letters, 2025, 36(2): 109630-. doi: 10.1016/j.cclet.2024.109630

    20. [20]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

Metrics
  • PDF Downloads(0)
  • Abstract views(740)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return