Citation: Chao Su, Song-Mei Ma, Geng-Xin Liu, Shu-Guang Yang. Dewetting Behavior of Hydrogen Bonded Polymer Complex Film under Hydrothermal Condition[J]. Chinese Journal of Polymer Science, ;2018, 36(9): 1036-1042. doi: 10.1007/s10118-018-2109-8 shu

Dewetting Behavior of Hydrogen Bonded Polymer Complex Film under Hydrothermal Condition

  • Corresponding author: Shu-Guang Yang, shgyang@dhu.edu.cn
  • Received Date: 13 December 2017
    Revised Date: 4 January 2018
    Accepted Date: 10 January 2018
    Available Online: 15 March 2018

  • Hydrogen-bonded polymer complex films with the thickness ranging from 50 nm to 2400 nm were prepared by layer-by-layer (LbL) assembly of poly(2-ethyl-2-oxazoline) (PEOX) and poly(acrylic acid) (PAA). The dewetting behavior of PEOX/PAA films under hydrothermal condition was investigated. It was found that the dewetting occurred at solid-liquid interface, and the typical morphologies such as holes, irregular cellular structure, and droplets were observed. Atomic force microscopy (AFM) revealed the initial rupture of the film. Microscopic Raman and infrared (IR) imaging demonstrated that the PEOX and PAA chains remained association during the dewetting process.
  • 加载中
    1. [1]

      Thiele, U. Open questions and promising new fields in dewetting. Eur. Phys. J. E 2003, 12(3), 409−416  doi: 10.1140/epje/e2004-00009-4

    2. [2]

      Herminghaus, S.; Brinkmann, M.; Seemann, R. Wetting and dewetting of complex surface geometries. Annu. Rev. Mater. Res. 2008, 38(1), 101−121  doi: 10.1146/annurev.matsci.38.060407.130335

    3. [3]

      Xue, L.; Han, Y. Pattern formation by dewetting of polymer thin film. Prog. Polym. Sci. 2011, 36(2), 269−293  doi: 10.1016/j.progpolymsci.2010.07.004

    4. [4]

      Meredith, J. C.; Smith, A. P.; Karim, A.; Amis, E. J. Combinatorial materials science for polymer thin-film dewetting. Macromolecules 2000, 33(26), 9747−9756  doi: 10.1021/ma001298g

    5. [5]

      Koplik, J. Molecular simulations of dewetting. Phys. Rev. Lett. 2000, 84(19), 4401−4404  doi: 10.1103/PhysRevLett.84.4401

    6. [6]

      Higgins, A. M.; Jones, R. A. L. Anisotropic spinodal dewetting as a route to self-assembly of patterned surfaces. Nature 2000, 404(6777), 476−478  doi: 10.1038/35006597

    7. [7]

      Wang, J. Z.; Zheng, Z. H.; Li, H. W.; Huck, W. T. S.; Sirringhaus, H. Dewetting of conducting polymer inkjet droplets on patterned surfaces. Nat. Mater. 2004, 3(3), 171−176  doi: 10.1038/nmat1073

    8. [8]

      Powell, M. R.; Cleary, L.; Davenport, M.; Shea, K. J.; Siwy, Z. S. Electric-field-induced wetting and dewetting in single hydrophobic nanopores. Nat. Nanotech. 2011, 6(12), 798−802  doi: 10.1038/nnano.2011.189

    9. [9]

      Seemann, R.; Herminghaus, S.; Jacobs, K. Gaining control of pattern formation of dewetting liquid films. J. Phys. Condens. Matter 2001, 13(13), 4925−4938

    10. [10]

      van Hameren, R.; Schön, P.; van Buul, A. M.; Hoogboom, J.; Lazarenko, S. V.; Gerritsen, J. W.; Engelkamp, H.; Christianen, P. C. M.; Heus, H. A.; Maan, J. C.; Rasing, T.; Speller, S.; Rowan, A. E.; Elemans, J. A. A. W.; Nolte, R. J. M. Macroscopic hierarchical surface patterning of porphyrin trimers via self-assembly and dewetting. Science 2006, 314(5804), 1433−1436  doi: 10.1126/science.1133004

    11. [11]

      Liu, J. C.; Shang, Y. Y.; Zhang, D. J.; Xie, Z.; Hua, R. X.; Wang, J. J. Single-material solvent-sensitive fluorescent actuator from carbon dots inverse opals based on gradient dewetting. Chinese J. Polym. Sci. 2017, 35(9), 1043−1050  doi: 10.1007/s10118-017-1981-y

    12. [12]

      Wang, W. C.; Shi, K.; Pan, Y. X.; Peng, C.; Zhao, Z. L.; Liu, W.; Liu, Y. G.; Ji, X. L. Fabrication of polymersomes with controllable morphologies through dewetting W/O/W double emulsion droplets. Chinese J. Polym. Sci. 2016, 34(4), 475−482  doi: 10.1007/s10118-016-1769-5

    13. [13]

      Brochard-Wyart, F. " Droplet: capillarity and wetting”. Soft Matter Phys., Spinger-Verlag Berlin Heidelberg, 1999, p. 29

    14. [14]

      Vrij, A. Possible mechanism for the spontaneous rupture of thin, free liquid films. Discuss. Faraday Soc. 1966, 42, 23−33  doi: 10.1039/df9664200023

    15. [15]

      Redon, C.; Brochardwyart, F.; Rondelez, F. Dynamics of dewetting. Phys. Rev. Lett. 1991, 66(66), 715−718

    16. [16]

      Reiter, G. Dewetting of thin polymer-films. Phys. Rev. Lett. 1992, 68(1), 75−78  doi: 10.1103/PhysRevLett.68.75

    17. [17]

      Reiter, G. Dewetting as a probe of polymer mobility in thin films. Macromolecules 1994, 27(11), 3046−3052  doi: 10.1021/ma00089a023

    18. [18]

      Mukherjee, R.; Sharma, A. Instability, self-organization and pattern formation in thin soft films. Soft Matter 2015, 11(45), 8717−8740  doi: 10.1039/C5SM01724F

    19. [19]

      Mitlin, V. S. Dewetting of solid surface: analogy with spinodal decomposition. J. Colloid Interface Sci. 1993, 156(2), 491−497  doi: 10.1006/jcis.1993.1142

    20. [20]

      Redon, C.; Brzoska, J. B.; Brochardwyart, F. Dewetting and slippage of microscopic polymer films. Macromolecules 1994, 27(2), 468−471  doi: 10.1021/ma00080a021

    21. [21]

      Xie, R.; Karim, A.; Douglas, J. F.; Han, C. C.; Weiss, R. A. Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 1998, 81(6), 1251−1254  doi: 10.1103/PhysRevLett.81.1251

    22. [22]

      Roy, S.; Mukherjee, R. Ordered to isotropic morphology transition in pattern-directed dewetting of polymer thin films on substrates with different feature heights. ACS Appl. Mater. Interfaces 2012, 4(10), 5375−5385  doi: 10.1021/am301311d

    23. [23]

      Seemann, R.; Herminghaus, S.; Jacobs, K. Dewetting patterns and molecular forces: areconciliation. Phys. Rev. Lett. 2001, 86(24), 5534−5537  doi: 10.1103/PhysRevLett.86.5534

    24. [24]

      Bhandaru, N.; Das, A.; Salunke, N.; Mukherjee, R. Ordered alternating binary polymer nanodroplet array by sequential spin dewetting. Nano Lett. 2014, 14(12), 7009−7016  doi: 10.1021/nl5033205

    25. [25]

      Bhandaru, N.; Goohpattader, P. S.; Faruqui, D.; Mukherjee, R.; Sharma, A. Solvent-vapor-assisted dewetting of prepatterned thin polymer films: control of morphology, order, and pattern miniaturization. Langmuir 2015, 31(10), 3203−3214  doi: 10.1021/la5045738

    26. [26]

      Bhandaru, N.; Das, A.; Mukherjee, R. Confinement induced ordering in dewetting of ultra-thin polymer bilayers on nanopatterned substrates. Nanoscale 2016, 8(2), 1073−1087  doi: 10.1039/C5NR06690E

    27. [27]

      Chen, D.; Zhao, W.; Wei, D.; Russell, T. P. Dewetting on curved interfaces: a simple route to polymer nanostructures. Macromolecules 2011, 44(20), 8020−8027  doi: 10.1021/ma2015276

    28. [28]

      Xia, T.; Ogawa, H.; Inoue, R.; Nishida, K.; Yamada, N. L.; Li, G.; Kanaya, T. Dewetting process of deuterated polystyrene and poly(vinyl methylether) blend thin films via phase separation. Macromolecules 2013, 46(11), 4540−4547  doi: 10.1021/ma400506f

    29. [29]

      Li, S. J.; Zhang, W. X.; Jiang, F.; Lu, Y. Y.; Shi, T. F.; An, L. J. Dynamics of hole growing in polymer thin films during dewetting. Acta Polymerica Sinica (in Chinese) 2014, 24(9), 1174−1181

    30. [30]

      Che, J.; Jawaid, A.; Grabowski, C. A.; Yi, Y.; Louis, G. C.; Ramakrishnan, S.; Vaia, R. A. Stability of polymer grafted nanoparticle monolayers: impact of architecture and polymer-substrate interactions on dewetting. ACS Macro Lett. 2016, 5(12), 1369−1374  doi: 10.1021/acsmacrolett.6b00772

    31. [31]

      Chandran, S.; Reiter, G. Transient cooperative processes in dewetting polymer melts. Phys. Rev. Lett. 2016, 116(8), 088301  doi: 10.1103/PhysRevLett.116.088301

    32. [32]

      Liu, P.; Huang, X.; Zhou, R.; Berne, B. J. Observation of a dewetting transition in the collapse of the melittin tetramer. Nature 2005, 437(7055), 159−162  doi: 10.1038/nature03926

    33. [33]

      Farrell, R. A.; Kehagias, N.; Shaw, M. T.; Reboud, V.; Zelsmann, M.; Holmes, J. D.; Torres, C. M. S.; Morris, M. A. Surface-directed dewetting of a block copolymer for fabricating highly uniform nanostructured microdroplets and concentric nanorings. ACS Nano 2011, 5(2), 1073−1085  doi: 10.1021/nn102720m

    34. [34]

      Besancon, B. M.; Green, P. F. Dewetting dynamics in miscible polymer-polymer thin film mixtures. J. Chem. Phys. 2007, 126(22), 224903  doi: 10.1063/1.2737043

    35. [35]

      Ma, M.; He, Z.; Yang, J.; Wang, Q.; Chen, F.; Wang, K.; Zhang, Q.; Deng, H.; Fu, Q. Vertical phase separation and liquid-liquid dewetting of thin PS/PCL blend films during spin coating. Langmuir 2011, 27(3), 1056−1063  doi: 10.1021/la104003p

    36. [36]

      Merola, F.; Grilli, S.; Coppola, S.; Vespini, V.; Nicola, S. D.; Maddalena, P.; Carfagna, C.; Ferraro, P. Reversible fragmentation and self-assembling of nematic liquid crystal droplets on functionalized pyroelectric substrates. Adv. Funct. Mater. 2012, 22(15), 3097−3097  doi: 10.1002/adfm.v22.15

    37. [37]

      Fowlkes, J. D.; Kondic, L.; Diez, J.; Wu, Y.; Rack, P. D. Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films. Nano Lett. 2011, 11(6), 2478−2485  doi: 10.1021/nl200921c

    38. [38]

      Krishna, H.; Sachan, R.; Strader, J.; Favazza, C.; Khenner, M.; Kalyanaraman, R. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnolgy 2010, 21(15), 155601  doi: 10.1088/0957-4484/21/15/155601

    39. [39]

      Péron, N.; Brochard-Wyart, F.; Duval, H. Dewetting of low-viscosity films at solid/liquid interfaces. Langmuir 2012, 28(45), 15844−15852  doi: 10.1021/la303374m

    40. [40]

      Verma, A.; Sharma, A. Enhanced self-organized dewetting of ultrathin polymer films under water-organic solutions: fabrication of sub-micrometer spherical lens arrays. Adv. Mater. 2010, 22(46), 5306−5309  doi: 10.1002/adma.201002768

    41. [41]

      Verma, A.; Sharma, A. Submicrometer pattern fabrication by intensification of instability in ultrathin polymer films under a water-solvent mix. Macromolecules 2011, 44(12), 4928−4935  doi: 10.1021/ma200113w

    42. [42]

      Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 1997, 277(5330), 1232−1237  doi: 10.1126/science.277.5330.1232

    43. [43]

      Borges, J.; Mano, J. F. Molecular interactions driving the layer-by-layer assembly of multilayers. Chem. Rev. 2014, 114(18), 8883−8942  doi: 10.1021/cr400531v

    44. [44]

      Richardson, J. J.; Bjornmalm, M.; Caruso, F. Technology-driven layer-by-layer assembly of nanofilms. Science 2015, 348(6233), aaa2491  doi: 10.1126/science.aaa2491

    45. [45]

      Zhang, L.; Zheng, M.; Liu, X.; Sun, J. Layer-by-layer assembly of salt-containing polyelectrolyte complexes for the fabrication of dewetting-induced porous coatings. Langmuir 2011, 27(4), 1346−1352  doi: 10.1021/la103953n

    46. [46]

      Shim, B. S.; Podsiadlo, P.; Lilly, D.G.; Agarwal, A.; Lee, J.; Tang, Z.; Ho, S.; Ingle, P.; Paterson, D.; Lu, W.; Kotov, N. A. Nanostructured thin films made by dewetting method of layer-by-layer assembly. Nano Lett. 2007, 7(11), 3266−3273  doi: 10.1021/nl071245d

    47. [47]

      Cao, Y. Fluorescence staining and confocal laser scanning microscopy study of hydrogen-bonded poly(vinylpyrrolidone)/poly(acrylic acid) film. Colloids Surf. A 2011, 392(1), 83−87  doi: 10.1016/j.colsurfa.2011.09.037

    48. [48]

      Yang, S.; Li, Y.; Li, X.; Li, Y.; Zhang, X.; Xu, J. Patterning of hydrogen-bonded assembly film through ionization in vapor. Thin Solid Films 2009, 517(9), 3024−3027  doi: 10.1016/j.tsf.2008.12.001

    49. [49]

      Ma, S.; Qi, X.; Cao, Y.; Yang, S.; Xu, J. Hydrogen bond detachment in polymer complexes. Polymer 2013, 54(20), 5382−5390  doi: 10.1016/j.polymer.2013.07.047

    50. [50]

      Decher, G.; Hong, J. D. Buildup of ultrathin multilayer films by a self-assembly process (1), consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Macromol. Symposia 1991, 46(11), 321−327

    51. [51]

      Stockton, W. B.; Rubner, M. F. Molecular-level processing of conjugated polymers. 4. layer-by-layer manipulation of polyaniline via hydrogen-bonding interactions. Macromolecules 1997, 30(9), 2717−2725

    52. [52]

      Wang, L.; Wang, Z.; Zhang, X.; Shen, J.; Chi, L.; Fuchs, H. A new approach for the fabrication of an alternating multilayer film of poly(4-vinylpyridine) and poly(acrylic acid) based on hydrogen bonding. Macromol. Rapid Commun. 1997, 18(6), 509−514  doi: 10.1002/marc.1997.030180609

    53. [53]

      Kharlampieva, E.; Sukhishvili, S. A. Hydrogen-bonded layer-by-layer polymer films. Polym. Rev. 2006, 46(4), 377−395

    54. [54]

      Yang, S.; Ma, S.; Wang, C.; Xu, J.; Zhu, M. Polymer complexation by hydrogen bonding at the interface. Aust. J. Chem. 2014, 67(1), 11−21  doi: 10.1071/CH13485

    55. [55]

      Su, C.; Sun, J.; Zhang, X.; Shen, D.; Yang, S. Hydrogen-bonded polymer complex thin film of poly(2-oxazoline) and poly(acrylic acid). Polymers 2017, 9(8), 363  doi: 10.3390/polym9080363

    56. [56]

      Yang, S.; Tan, S.; Zhang, Y.; Xu, J.; Zhang, X. Interferometric study onhydrogen-bonded assembly film. Thin Solid Films 2008, 516, 4018−4024  doi: 10.1016/j.tsf.2007.08.010

    57. [57]

      Ma, J.; Yang, S.; Li, Y.; Xu, X.; Xu, J. Effect of temperature on build-up and post hydrothermal processing of hydrogen-bonded PVPON/PAA film. Soft Matter 2011, 7(19), 9435−9443  doi: 10.1039/c1sm05587a

    58. [58]

      Wang, Z.; Xu, J.; Wu, L.; Chen, X.; Yang, S.; Liu, H.; Zhou, X. Dissolution, hydrolysis and crystallization behavior of polyamide 6 in superheated water. Chinese J. Polym. Sci. 2015, 33(9), 1334−1343  doi: 10.1007/s10118-015-1682-3

    59. [59]

      Zhang, Y.; Li, F.; Valenzuela, L. D.; Sammalkorpi, M.; Lutkenhaus, J. L. Effect of water on the thermal transition observed in poly(allylamine hydrochloride)-poly(acrylic acid) complexes. Macromolecules 2016, 49(19), 7563−7570  doi: 10.1021/acs.macromol.6b00742

    60. [60]

      Zhai, L.; Nolte, A. J.; Cohen, R. E.; Rubner, M. F. pH-gated porosity transitions of polyelectrolyte multilayers in confined geometries and their application as tunable bragg reflectors. Macromolecules 2004, 37(16), 6113−6123  doi: 10.1021/ma049593e

    61. [61]

      Yang, S.; Zhang, Y.; Guan, Y.; Tan, S.; Zhang, X.; Cheng, S.; Xu, J. Water uptake behavior of hydrogen-bonded PVPON/PAA LbL film. Soft Matter 2006, 2(8), 699−704  doi: 10.1039/B606923A

  • 加载中
    1. [1]

      Songtao CaiLiuying WuYuan LiSoham SamantaJinying WangBing LiuFeihu WuKaitao LaiYingchao LiuJunle QuZhigang Yang . Intermolecular hydrogen-bonding as a robust tool toward significantly improving the photothermal conversion efficiency of a NIR-II squaraine dye. Chinese Chemical Letters, 2024, 35(4): 108599-. doi: 10.1016/j.cclet.2023.108599

    2. [2]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    3. [3]

      Mengjuan SunMuye ZhouYifang XiaoHailei TangJinhua ChenRuitao ZhangChunjiayu LiQi YaQian ChenJiasheng TuQiyue WangChunmeng Sun . Reversibly size-switchable polyion complex micelles for antiangiogenic cancer therapy. Chinese Chemical Letters, 2024, 35(7): 109110-. doi: 10.1016/j.cclet.2023.109110

    4. [4]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    5. [5]

      Peng MengQian-Cheng LuoAidan BrockXiaodong WangMahboobeh ShahbaziAaron MicallefJohn McMurtrieDongchen QiYan-Zhen ZhengJingsan Xu . Molar ratio induced crystal transformation from coordination complex to coordination polymers. Chinese Chemical Letters, 2024, 35(4): 108542-. doi: 10.1016/j.cclet.2023.108542

    6. [6]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    7. [7]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    8. [8]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    9. [9]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    10. [10]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    11. [11]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    12. [12]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    13. [13]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    14. [14]

      Yingying YanWanhe JiaRui CaiChun Liu . An AIPE-active fluorinated cationic Pt(Ⅱ) complex for efficient detection of picric acid in aqueous media. Chinese Chemical Letters, 2024, 35(5): 108819-. doi: 10.1016/j.cclet.2023.108819

    15. [15]

      Jian PengYue JiangShuangyu WuYanran ChengJingyu LiangYixin WangZhuo LiSijie Lin . A nonradical oxidation process initiated by Ti-peroxo complex showed high specificity toward the degradation of tetracycline antibiotics. Chinese Chemical Letters, 2024, 35(5): 108903-. doi: 10.1016/j.cclet.2023.108903

    16. [16]

      Wenjuan JinZelong ChenYi WangJiaxuan LiJiahui LiYuxin PeiZhichao Pei . Nano metal-photosensitizer based on Aza-BODIPY-Cu complex for CDT-enhanced dual phototherapy. Chinese Chemical Letters, 2024, 35(7): 109328-. doi: 10.1016/j.cclet.2023.109328

    17. [17]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    18. [18]

      Zhengyi ShiJie YinYang XiaoZhangrong HouFei SongJianping WangQingyi TongChangxing QiYonghui Zhang . Unprecedented sesquiterpene-polycyclic polyprenylated acylphloroglucinol adduct against acute myeloid leukemia via inhibiting mitochondrial complex Ⅴ. Chinese Chemical Letters, 2024, 35(10): 109458-. doi: 10.1016/j.cclet.2023.109458

    19. [19]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    20. [20]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

Metrics
  • PDF Downloads(0)
  • Abstract views(622)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return