Citation: Lin Ye, Shao-Feng Zhang, Yi-Chao Lin, Jia-Kang Min, Li Ma, Tao Tang. Synthesis and Characterization of Butyl Acrylate-based Graft Polymers with Thermo-responsive Branching Sites via the Diels-Alder Reaction of Furan/Maleimide[J]. Chinese Journal of Polymer Science, ;2018, 36(9): 1011-1018. doi: 10.1007/s10118-018-2107-x shu

Synthesis and Characterization of Butyl Acrylate-based Graft Polymers with Thermo-responsive Branching Sites via the Diels-Alder Reaction of Furan/Maleimide

  • Thermo-responsive butyl acrylate/furfuryl methacrylate copolymer-based (PBF backbone) graft (co)polymers with dynamic covalent linkages between their backbones and side chains via the Diels-Alder reaction of furan/maleimide were synthesized. Atom transfer radical polymerization (ATRP) was used to synthesize graft copolymers with thermo-responsive transformation from graft copolymers to linear polymers with bimodal or wide MWD. The NMR measurements indicated that the Diels-Alder reaction and retro-Diels-Alder reaction occurred, depending on the change of the temperature, meaning that the side chains could be cleaved and reformed according to the variation of the temperature. GPC measurements demonstrated that the molecular weights of the polymers were thermo-responsive. Furthermore, three graft copolymers with various branching chains (PBF-g-PBA, PBF-g-P(BMA-co-MA) and PBF-g-PBMA) were compared to study the influence of compatibility between the backbone and the branching chain on the efficiency of Diels-Alder reaction after the cleavage of the DA linkage. The results showed that the ability of the side chains to come back to the main chain was strongly affected by the compatibility between the backbone and the side chains and the flexibility of the polymer chains.
  • 加载中
    1. [1]

      Weis, P.; Wang, D.; Wu, S. Visible-light-responsive azopolymers with inhibited π-π stacking enable fully reversible photopatterning. Macromolecules 2016, 49(17), 6368−6373  doi: 10.1021/acs.macromol.6b01367

    2. [2]

      Yamamoto, T.; Yagyu, S.; Tezuka, Y. Light- and heat-triggered reversible linear-cyclic topological conversion of telechelic polymers with anthryl end groups. J. Am. Chem. Soc. 2016, 138(11), 3904−3911  doi: 10.1021/jacs.6b00800

    3. [3]

      Zhang, Y.; Ying, H.; Hart, K. R.; Wu, Y.; Hsu, A. J.; Coppola, A. M.; Kim, T. A.; Yang, K.; Sottos, N. R.; White, S. R. Malleable and recyclable poly(urea-urethane) thermosets bearing hindered urea bonds. Adv. Mater. 2016, 28(35), 7646−7651  doi: 10.1002/adma.201601242

    4. [4]

      Zheng, N.; Fang, Z. Z.; Zou, W. K.; Zhao, Q.; Xie, T. Thermoset shape-memory polyurethane with intrinsic plasticity enabled by transcarbamoylation. Angew. Chem. Int. Ed., 2016, 55(38), 11421−11425  doi: 10.1002/anie.201602847

    5. [5]

      Fang, Y. L.; Du, X. S.; Du, Z. L.; Wang, H. B.; Cheng, X. Light- and heat-triggered polyurethane based on dihydroxyl anthracene derivatives for self-healing applications. J. Mater. Chem. A 2017, 5(17), 8010−8017  doi: 10.1039/C7TA00871F

    6. [6]

      van Damme, J.; van den Berg, O.; Brancart, J.; Vlaminck, L.; Huyck, C.; van Assche, G.; van Mele, B.; Du Prez, F. Anthracene-based thiol-ene networks with thermo-degradable and photo-reversible properties. Macromolecules 2017, 50(5), 1930−1938  doi: 10.1021/acs.macromol.6b02400

    7. [7]

      Röttger, M.; Domenech, T.; van der Weegen, R.; Breuillac, A.; Nicolaÿ, R.; Leibler, L. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science 2017, 356(6333), 62−65  doi: 10.1126/science.aah5281

    8. [8]

      Turkenburg, D. H.; Durant, Y.; Fischer, H. R. Bio-based self-healing coatings based on thermo-reversible Diels-Alder reaction. Prog. Org. Coat. 2017, 111, 38−46  doi: 10.1016/j.porgcoat.2017.05.006

    9. [9]

      Yesilyurt, V.; Webber, M. J.; Appel, E. A.; Godwin, C.; Langer, R.; Anderson, D. G. Injectable self-healing glucose-responsive hydrogels with pH-regulated mechanical properties. Adv. Mater. 2016, 28(1), 86−91  doi: 10.1002/adma.201502902

    10. [10]

      Nakahata, M.; Mori, S.; Takashima, Y.; Yamaguchi, H.; Harada, A. Self-healing materials formed by cross-linked polyrotaxanes with reversible bonds. Chem 2016, 1(5), 766−775  doi: 10.1016/j.chempr.2016.09.013

    11. [11]

      Lu, Y. X.; Tournilhac, F. O.; Leibler, L.; Guan, Z. Making insoluble polymer networks malleable via olefin metathesis. J. Am. Chem. Soc. 2012, 134(20), 8424−8427  doi: 10.1021/ja303356z

    12. [12]

      Shi, Q.; Yu, K.; Dunn, M. L.; Wang, T.; Qi, H. J. Solvent assisted pressure-free surface welding and reprocessing of malleable epoxy polymers. Macromolecules 2016, 49(15), 5527−5537  doi: 10.1021/acs.macromol.6b00858

    13. [13]

      Zong, C.; Zhao, Y.; Ji, H.; Han, X.; Xie, J.; Wang, J.; Cao, Y.; Jiang, S.; Lu, C. Tuning and erasing surface wrinkles by reversible visible-light-induced photoisomerization. Angew. Chem. Int. Ed. 2016, 55(12), 3931−3935  doi: 10.1002/anie.201510796

    14. [14]

      Guimard, N. K.; Oehlenschlaeger, K. K.; Zhou, J.; Hilf, S.; Schmidt, F. G.; Barner-Kowollik, C. Current trends in the field of self-healing materials. Macromol. Chem. Phys. 2012, 213(2), 131−143  doi: 10.1002/macp.201100442

    15. [15]

      Jeon, I.; Cui, J. X.; Illeperuma, W. R. K.; Aizenberg, J.; Vlassak, J. J. Extremely stretchable and fast self-healing hydrogels. Adv. Mater. 2016, 28(23), 4678−4683  doi: 10.1002/adma.v28.23

    16. [16]

      Li, C. H.; Wang, C.; Keplinger, C.; Zuo, J. L.; Jin, L.; Sun, Y.; Zheng, P.; Cao, Y.; Lissel, F.; Linder, C.; You, X. Z.; Bao, Z. A highly stretchable autonomous self-healing elastomer. Nat. Chem. 2016, 8(6), 618−24  doi: 10.1038/nchem.2492

    17. [17]

      Chang, J.; Zhao, Q.; Kang, L.; Li, H.; Xie, M.; Liao, X. Multiresponsive supramolecular gel based on pillararene- containing polymers. Macromolecules 2016, 49(7), 2814−2820  doi: 10.1021/acs.macromol.6b00270

    18. [18]

      Yuan, C. E.; Zhang, M. Q.; Rong, M. Z. Application of alkoxyamine in self-healing of epoxy. J. Mater. Chem. A 2014, 2(18), 6558−6566  doi: 10.1039/C4TA00130C

    19. [19]

      Radl, S.; Kreimer, M.; Griesser, T.; Oesterreicher, A.; Moser, A.; Kern, W.; Schlögl, S. New strategies towards reversible and mendable epoxy based materials employing [4πs+4πs] photocycloaddition and thermal cycloreversion of pendant anthracene groups. Polymer 2015, 80, 76−87  doi: 10.1016/j.polymer.2015.10.043

    20. [20]

      Oehlenschlaeger, K. K.; Mueller, J. O.; Brandt, J.; Hilf, S.; Lederer, A.; Wilhelm, M.; Graf, R.; Coote, M. L.; Schmidt, F. G.; Barner-Kowollik, C. Adaptable hetero Diels-Alder networks for fast self-healing under mild conditions. Adv. Mater. 2014, 26(21), 3561−3566  doi: 10.1002/adma.v26.21

    21. [21]

      Amamoto, Y.; Kamada, J.; Otsuka, H.; Takahara, A.; Matyjaszewski, K. Repeatable photoinduced self-healing of covalently cross-linked polymers through reshuffling of trithiocarbonate units. Angew. Chem. 2011, 123(7), 1698−1701  doi: 10.1002/ange.201003888

    22. [22]

      Taynton, P.; Ni, H.; Zhu, C.; Yu, K.; Loob, S.; Jin, Y.; Qi, H. J.; Zhang, W. Repairable woven carbon fiber composites with full recyclability enabled by malleable polyimine networks. Adv. Mater. 2016, 28(15), 2904−2909  doi: 10.1002/adma.201505245

    23. [23]

      Chao, A.; Negulescu, I.; Zhang, D. Dynamic covalent polymer networks based on degenerative imine bond exchange: tuning the malleability and self-healing properties by solvent. Macromolecules 2016, 49(17), 6277−6284  doi: 10.1021/acs.macromol.6b01443

    24. [24]

      Yang, Y.; Pei, Z.; Li, Z.; Wei, Y.; Ji, Y. Making and remaking dynamic 3D structures by shining light on flat liquid crystalline vitrimer films without a mold. J. Am. Chem. Soc. 2016, 138(7), 2118−2121  doi: 10.1021/jacs.5b12531

    25. [25]

      Lu, Y. X.; Guan, Z. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon double bonds. J. Am. Chem. Soc. 2012, 134(34), 14226−14231  doi: 10.1021/ja306287s

    26. [26]

      Tasdelen, M. A. Diels-Alder " click” reactions: recent applications in polymer and material science. Polym. Chem. 2011, 2(10), 2133−2145  doi: 10.1039/c1py00041a

    27. [27]

      Sanyal, A. Diels-Alder Cycloaddition-cycloreversion: A powerful combo in materials design. Macromol. Chem. Phys. 2010, 211(13), 1417−1425  doi: 10.1002/macp.v211:13

    28. [28]

      Gregoritza, M.; Brandl, F. P. The Diels-Alder reaction: a powerful tool for the design of drug delivery systems and biomaterials. Eur. J. Pharm. Biopharm. 2015, 97, 438−453  doi: 10.1016/j.ejpb.2015.06.007

    29. [29]

      Gandini, A. The furan/maleimide Diels-Alder reaction: a versatile click-unclick tool in macromolecular synthesis. Prog. Polym. Sci. 2013, 38(1), 1−29  doi: 10.1016/j.progpolymsci.2012.04.002

    30. [30]

      Gandini, A. Furans as offspring of sugars and polysaccharides and progenitors of a family of remarkable polymers: a review of recent progress. Polym. Chem. 2010, 1(3), 245−251  doi: 10.1039/B9PY00233B

    31. [31]

      Gandini, A. Polymers from renewable resources: a challenge for the future of macromolecular materials. Macromolecules 2008, 41(24), 9491−9504  doi: 10.1021/ma801735u

    32. [32]

      Polgar, L.; Kingma, A.; Roelfs, M.; van Essen, M.; van Duin, M.; Picchioni, F. Kinetics of cross-linking and de-cross-linking of EPM rubber with thermoreversible Diels-Alder chemistry. Eur. Polym. J. 2017, 90, 150−161  doi: 10.1016/j.eurpolymj.2017.03.020

    33. [33]

      Pramanik, N. B.; Mondal, P.; Mukherjee, R.; Singha, N. K. A new class of self-healable hydrophobic materials based on ABA triblock copolymer via RAFT polymerization and Diels-Alder "click chemistry". Polymer 2017, 119, 195−205  doi: 10.1016/j.polymer.2017.05.003

    34. [34]

      Heo, Y.; Sodano, H. A. Thermally responsive self-healing composites with continuous carbon fiber reinforcement. Compos. Sci. Technol. 2015, 118, 244−250  doi: 10.1016/j.compscitech.2015.08.015

    35. [35]

      Laure, W.; Woisel, P.; Lyskawa, J. Switching the wettability of titanium surfaces through Diels-Alder chemistry. Chem. Mater. 2014, 26(12), 3771−3780  doi: 10.1021/cm501354j

    36. [36]

      Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. A thermally re-mendable cross-linked polymeric material. Science 2002, 295(5560), 1698−1702  doi: 10.1126/science.1065879

    37. [37]

      Hu, W.; Ren, Z.; Li, J.; Askounis, E.; Xie, Z.; Pei, Q. New dielectric elastomers with variable moduli. Adv. Funct. Mater. 2015, 25(30), 4827−4836  doi: 10.1002/adfm.201501530

    38. [38]

      Aumsuwan, N.; Urban, M. W. Reversible releasing of arms from star morphology polymers. Polymer 2009, 50(1), 33−36  doi: 10.1016/j.polymer.2008.10.048

    39. [39]

      Syrett, J. A.; Mantovani, G.; Barton, W. R. S.; Price, D.; Haddleton, D. M. Self-healing polymers prepared via living radical polymerisation. Polym. Chem. 2010, 1(1), 102−106  doi: 10.1039/b9py00316a

    40. [40]

      Deng, G.; Chen, Y. A novel way to synthesize star polymers in one pot by ATRP of N-[2-(2-bromoisobutyryloxy)-ethyl]maleimide and styrene. Macromolecules 2004, 37(1), 18−26  doi: 10.1021/ma034542n

    41. [41]

      Buzin, A. I.; Pyda, M.; Costanzo, P.; Matyjaszewski, K.; Wunderlich, B. Calorimetric study of block-copolymers of poly(n-butyl acrylate) and gradient poly(n-butyl acrylate-co-methyl methacrylate). Polymer 2002, 43(20), 5563−5569  doi: 10.1016/S0032-3861(02)00358-0

    42. [42]

      Canadell, J.; Fischer, H.; De With, G.; van Benthem, R. A. T. M. Stereoisomeric effects in thermo-remendable polymer networks based on Diels-Alder crosslink reactions. J. Polym. Sci., Part A: Polym. Chem. 2010, 48(15), 3456−3467  doi: 10.1002/pola.24134

    43. [43]

      Mauldin, T. C.; Rule, J. D.; Sottos, N. R.; White, S. R.; Moore, J. S. Self-healing kinetics and the stereoisomers of dicyclopentadiene. J. R. Soc. Interface 2007, 4(13), 389−393  doi: 10.1098/rsif.2006.0200

    44. [44]

      Gandini, A.; Belgacem, M. N. Furans in polymer chemistry. Prog. Polym. Sci. 1997, 22(6), 1203−1379  doi: 10.1016/S0079-6700(97)00004-X

  • 加载中
    1. [1]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    2. [2]

      Chun-Yun Ding Ru-Yuan Zhang Yu-Wu Zhong Jiannian Yao . Binary and heterostructured microplates of iridium and ruthenium complexes: Preparation, characterization, and thermo-responsive emission. Chinese Journal of Structural Chemistry, 2024, 43(10): 100393-100393. doi: 10.1016/j.cjsc.2023.100393

    3. [3]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    4. [4]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    5. [5]

      Yu-Hang MiaoZheng-Xu ZhangXu-Yi HuangYuan-Zhao HuaShi-Kun JiaXiao XiaoMin-Can WangLi-Ping XuGuang-Jian Mei . Catalytic asymmetric dearomative azo-Diels–Alder reaction of 2-vinlyindoles. Chinese Chemical Letters, 2024, 35(4): 108830-. doi: 10.1016/j.cclet.2023.108830

    6. [6]

      Yi ZhuJingyan ZhangYuchao ZhangYing ChenGuanghui AnRen Liu . Designing unimolecular photoinitiator by installing NHPI esters along the TX backbone for acrylate photopolymerization and their applications in coatings and 3D printing. Chinese Chemical Letters, 2024, 35(7): 109573-. doi: 10.1016/j.cclet.2024.109573

    7. [7]

      Yu YanJiawei SongDongdong LiuZihan LiuJialing ChengZhiyang ChenYanfang YangWeizhe JiangHongliang WangJun YeYuling Liu . Simple and versatile in situ thermo-sensitive hydrogel for rectal administration of SZ-A to alleviate inflammation and repair mucosal barrier in ulcerative colitis. Chinese Chemical Letters, 2024, 35(6): 109736-. doi: 10.1016/j.cclet.2024.109736

    8. [8]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    9. [9]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    10. [10]

      Haijing CuiWeihao ZhuChuning YueMing YangWenzhi RenAiguo Wu . Recent progress of ultrasound-responsive titanium dioxide sonosensitizers in cancer treatment. Chinese Chemical Letters, 2024, 35(10): 109727-. doi: 10.1016/j.cclet.2024.109727

    11. [11]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    12. [12]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    13. [13]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    14. [14]

      Jingting WangYuanyuan ChenLinlin HanShasha XiaXingyao ZhangPeng XueYuejun KangJian MingZhigang Xu . Microenvironment responsive pod-structured astaxanthin nanocarrier for ameliorating inflammatory bowel disease. Chinese Chemical Letters, 2024, 35(7): 109029-. doi: 10.1016/j.cclet.2023.109029

    15. [15]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    16. [16]

      Ling-Ling WuXiangchuan MengQingyang ZhangXiaowan HanFeiya YangQinghua WangHai-Yu HuNianzeng Xing . Heavy-atom engineered hypoxia-responsive probes for precisive photoacoustic imaging and cancer therapy. Chinese Chemical Letters, 2024, 35(4): 108663-. doi: 10.1016/j.cclet.2023.108663

    17. [17]

      Liangji ChenZhen YuanFudong FengXin ZhouZhile XiongWuji WeiHao ZhangBanglin ChenShengchang XiangZhangjing Zhang . A hydrogen-bonded organic framework containing fluorescent carbazole and responsive pyridyl units for sensing organic acids. Chinese Chemical Letters, 2024, 35(9): 109344-. doi: 10.1016/j.cclet.2023.109344

    18. [18]

      Jinyu GuoYandai LinShaohua HeYueqing ChenFenglu LiRenjie RuanGaoxing PanHexin NanJibin SongJin Zhang . Utilizing dual-responsive iridium(Ⅲ) complex for hepatocellular carcinoma: Integrating photoacoustic imaging with chemotherapy and photodynamic therapy. Chinese Chemical Letters, 2024, 35(9): 109537-. doi: 10.1016/j.cclet.2024.109537

    19. [19]

      Yan LiuYang WangJiayi ZhuXuxian SuXudong LinLiang XuXiwen Xing . Employing pH-responsive RNA triplex to control CRISPR/Cas9-mediated gene manipulation in mammalian cells. Chinese Chemical Letters, 2024, 35(9): 109427-. doi: 10.1016/j.cclet.2023.109427

    20. [20]

      Huan Hu Ying Zhang Shi-Shuang Huang Zhi-Gang Li Yungui Liu Rui Feng Wei Li . Temperature- and pressure-responsive photoluminescence in a 1D hybrid lead halide. Chinese Journal of Structural Chemistry, 2024, 43(10): 100395-100395. doi: 10.1016/j.cjsc.2024.100395

Metrics
  • PDF Downloads(0)
  • Abstract views(654)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return