Citation: Dan Liu, Ying-Ying Wang, Ying-Chun Sun, Yuan-Yuan Han, Jie Cui, Wei Jiang. Self-assembly Behavior of Symmetrical Linear ABCA Tetrablock Copolymer: A Self-consistent Field Theory Study[J]. Chinese Journal of Polymer Science, ;2018, 36(7): 888-896. doi: 10.1007/s10118-018-2106-y shu

Self-assembly Behavior of Symmetrical Linear ABCA Tetrablock Copolymer: A Self-consistent Field Theory Study

  • ABCA tetrablock copolymers offer new opportunities for design of materials with novel structures. Using real-space self-consistent field theory and simulation, we systematically examined the self-assembly behavior of linear ABCA tetrablock copolymers in a 2D space. The simulation was carried out under conditions of symmetrical compositions and interactions. We focus on the influence of chain length ratio of block A and interactions between block A and other blocks B and C on the self-assembly behavior of the copolymer system. The simulation results show that most of the structures self-assembled by the ABCA tetrablock copolymers are centrosymmetric, such as diblock-like lamella phase, two kinds of lamellae with beads at interface, two kinds of hierarchical lamella phase, hexagonal honeycomb-like phase, lamella phase with mixed BC and hexagonal spheres with mixed BC. Furthermore, we find that a novel noncentrosymmetric Janus spheres can be obtained when the interaction between blocks B and C is strong, whereas a noncentrosymmetric lamella phase was obtained at weak interaction between blocks B and C. Phase diagrams for the ABCA tetrablock copolymers with different interaction strength between blocks B and C are constructed by comparing free energies of candidate ordered structures. In addition, studies on the metastable behavior of the system reveal that enthalpy plays an important role in the metastable behavior of the ABCA tetrablock copolymer system. Our work can provide useful guide for structure control of such kind of tetrablock copolymers in experiments.
  • 加载中
    1. [1]

      Fujikawa, S.; Koizumi, M.; Taino, A.; Okamoto, K. Fabrication and unique optical properties of two-dimensional silver nanorod arrays with nanometer gaps on a silicon substrate from a self-assembled template of diblock copolymer. Langmuir 2016, 32(47), 12504-12510.  doi: 10.1021/acs.langmuir.6b02934

    2. [2]

      Higuchi, T.; Sugimori, H.; Jiang, X.; Hong, S.; Matsunaga, K.; Kaneko, T.; Abetz, V.; Takahara, A.; Jinnai, H. Morphological control of helical structures of an ABC-type triblock terpolymer by distribution control of a blending homopolymer in a block copolymer microdomain. Macromolecules 2013, 46(17), 6991-6997.  doi: 10.1021/ma401193u

    3. [3]

      Nunes, S. P. Block copolymer membranes for aqueous solution applications. Macromolecules 2016, 49(8), 2905-2916.  doi: 10.1021/acs.macromol.5b02579

    4. [4]

      Thurn-Albrecht, T.; Schotter, J.; Kastle, C. A.; Emley, N.; Shibauchi, T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science 2000, 290(5499), 2126-2129.  doi: 10.1126/science.290.5499.2126

    5. [5]

      Bates, C. M.; Maher, M. J.; Janes, D. W.; Ellison, C. J.; Willson, C. G. Block copolymer lithography. Macromolecules 2014, 47(1), 2-12.  doi: 10.1021/ma401762n

    6. [6]

      Ludwigs, S.; Boker, A.; Voronov, A.; Rehse, N.; Magerle, R.; Krausch, G. Self-assembly of functional nanostructures from ABC triblock copolymers. Nat. Mater. 2003, 2(11), 744-747.  doi: 10.1038/nmat997

    7. [7]

      Ji, S. X.; Wan, L.; Liu, C. C.; Nealey, P. F. Directed self-assembly of block copolymers on chemical patterns: a platform for nanofabrication. Prog. Polym. Sci. 2016, 54-55, 76-127.  doi: 10.1016/j.progpolymsci.2015.10.006

    8. [8]

      Matsen, M. W. Equilibrium behavior of asymmetric ABA triblock copolymer melts. J. Chem. Phys. 2000, 113(13), 5539-5544.  doi: 10.1063/1.1289889

    9. [9]

      Matsen, M. W.; Schick, M. Stable and unstable phases of a diblock copolymer melt. Phys. Rev. Lett. 1994, 72(16), 2660-2663.  doi: 10.1103/PhysRevLett.72.2660

    10. [10]

      Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of complex block copolymers: ABC linear triblock copolymers. Phys. Rev. E 2004, 69(3)  doi: 10.1103/PhysRevE.69.031803

    11. [11]

      Sun, M. Z.; Wang, P.; Qiu, F.; Tang, P.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of ABC linear triblock copolymers: Parallel real-space self-consistent-field-theory simulation. Phys. Rev. E 2008, 77(1), 016701.  doi: 10.1103/PhysRevE.77.016701

    12. [12]

      Li, W. H.; Qiu, F.; Shi, A. C. Emergence and stability of helical superstructures in ABC triblock copolymers. Macromolecules 2012, 45(1), 503-509.  doi: 10.1021/ma2023952

    13. [13]

      Liu, M. J.; Li, W. H.; Qiu, F.; Shi, A. C. Theoretical study of phase behavior of frustrated ABC linear triblock copolymers. Macromolecules 2012, 45(23), 9522-9530.  doi: 10.1021/ma302060m

    14. [14]

      Tang, P.; Qiu, F.; Zhang, H. D.; Yang, Y. L. Morphology and phase diagram of complex block copolymers: ABC star triblock copolymers. J. Phys. Chem. B 2004, 108(24), 8434-8438.  doi: 10.1021/jp037911q

    15. [15]

      Li, W. H.; Xu, Y. C.; Zhang, G. J.; Qiu, F.; Yang, Y. L.; Shi, A. C. Real-space self-consistent mean-field theory study of ABC star triblock copolymers. J. Chem. Phys. 2010, 133(6),  doi: 10.1063/1.3469857

    16. [16]

      Zhang, G. J.; Qiu, F.; Zhang, H. D.; Yang, Y. L.; Shi, A. C. SCFT study of tiling patterns in ABC star terpolymers. Macromolecules 2010, 43(6), 2981-2989.  doi: 10.1021/ma902735t

    17. [17]

      Gemma, T.; Hatano, A.; Dotera, T. Monte Carlo simulations of the morphology of ABC star polymers using the diagonal bond method. Macromolecules 2002, 35(8), 3225-3237.  doi: 10.1021/ma001040q

    18. [18]

      Hayashida, K.; Saito, N.; Arai, S.; Takano, A.; Tanaka, N.; Matsushita, Y. Hierarchical morphologies formed by ABC star-shaped terpolymers. Macromolecules 2007, 40(10), 3695-3699.  doi: 10.1021/ma062972i

    19. [19]

      Mogi, Y.; Nomura, M.; Kotsuji, H.; Ohnishi, K.; Matsushita, Y.; Noda, I. Superlattice structures in morphologies of the ABC triblock copolymers. Macromolecules 1994, 27(23), 6755-6760.  doi: 10.1021/ma00101a013

    20. [20]

      Jinnai, H.; Kaneko, T.; Matsunaga, K.; Abetz, C.; Abetz, V. A double helical structure formed from an amorphous, achiral ABC triblock terpolymer. Soft Matter 2009, 5(10), 2042-2046.  doi: 10.1039/b901008d

    21. [21]

      Huang, H. L.; Yi, G. B.; Zu, X. H.; Zhong, B. B.; Luo, H. S. Patterning of triblock copolymer film and its application for surface-enhanced Raman scattering. Chinese J. Polym. Sci. 2017, 35(5), 623-630.  doi: 10.1007/s10118-017-1914-9

    22. [22]

      Epps, T. H.; Cochran, E. W.; Bailey, T. S.; Waletzko, R. S.; Hardy, C. M.; Bates, F. S. Ordered network phases in linear poly(isoprene-b-styrene-b-ethylene oxide) triblock copolymers. Macromolecules 2004, 37(22), 8325-8341.  doi: 10.1021/ma048762s

    23. [23]

      Bates, F. S.; Hillmyer, M. A.; Lodge, T. P.; Bates, C. M.; Delaney, K. T.; Fredrickson, G. H. Multiblock polymers: Panacea or Pandora’s box? Science 2012, 336(6080), 434-440.  doi: 10.1126/science.1215368

    24. [24]

      Touris, A.; Chanpuriya, S.; Hillmyer, M. A.; Bates, F. S. Synthetic strategies for the generation of ABCA' type asymmetric tetrablock terpolymers. Polym. Chem. 2014, 5(19), 5551-5559.  doi: 10.1039/C4PY00614C

    25. [25]

      Brannan, A. K.; Bates, F. S. ABCA tetrablock copolymer vesicles. Macromolecules 2004, 37(24), 8816-8819.  doi: 10.1021/ma048858m

    26. [26]

      Cui, J.; Jiang, W. Structure of ABCA tetrablock copolymer vesicles and their formation in selective solvents: a Monte Carlo study. Langmuir 2011, 27(16), 10141-10147.  doi: 10.1021/la202377t

    27. [27]

      Matsuo, Y.; Konno, R.; Ishizone, T.; Goseki, R.; Hirao, A. Precise synthesis of block polymers composed of three or more blocks by specially designed linking methodologies in conjunction with living anionic polymerization system. Polymers 2013, 5(3), 1012-1040.  doi: 10.3390/polym5031012

    28. [28]

      Hoogenboom, R.; Wiesbrock, F.; Leenen, M. A. M.; Thijs, H. M. L.; Huang, H. Y.; Fustin, C. A.; Guillet, P.; Gohy, J. F.; Schubert, U. S. Synthesis and aqueous micellization of amphiphilic tetrablock ter- and quarterpoly(2-oxazoline)s. Macromolecules 2007, 40(8), 2837-2843.  doi: 10.1021/ma062725e

    29. [29]

      Radlauer, M. R.; Fukuta, S.; Matta, M. E.; Hillmyer, M. A. Controlled synthesis of ABCA' tetrablock terpolymers. Polymer 2017, 124, 60-67.  doi: 10.1016/j.polymer.2017.07.025

    30. [30]

      Takano, A.; Soga, K.; Suzuki, J.; Matsushita, Y. Noncentrosymmetric structure from a tetrablock quarterpolymer of the ABCA type. Macromolecules 2003, 36(25), 9288-9291.  doi: 10.1021/ma035344z

    31. [31]

      Jaffer, K. M.; Wickham, R. A.; Shi, A. C. Noncentrosymmetric lamellar phase in ABCD tetrablock copolymers. Macromolecules 2004, 37(18), 7042-7050.  doi: 10.1021/ma049784h

    32. [32]

      Stoenescu, R.; Graff, A.; Meier, W. Asymmetric ABC-triblock copolymer membranes induce a directed insertion of membrane proteins. Macromol. Biosci. 2004, 4(10), 930-935.  doi: 10.1002/(ISSN)1616-5195

    33. [33]

      Jiang, W. B.; Ji, Y. Y.; Lang, W. C.; Li, S. B.; Wang, X. H. Surface-induced morphologies of ABC star triblock copolymer in spherical cavities. Chinese J. Polym. Sci. 2015, 33(11), 1503-1515.  doi: 10.1007/s10118-015-1706-z

    34. [34]

      Fan, J. J.; Han, Y. Y.; Cui, J. Solvent property induced morphological changes of ABA amphiphilic triblock copolymer micelles in dilute solution: a self-consistent field simulation study. Chinese J. Polym. Sci. 2014, 32(12), 1704-1713.  doi: 10.1007/s10118-014-1529-3

    35. [35]

      Xia, Y. D.; Chen, J. Z.; Shi, T. F.; An, L. J. Self-assembly of linear rod-coil multiblock copolymers. Chinese J. Polym. Sci. 2013, 31(9), 1242-1249.  doi: 10.1007/s10118-013-1322-8

    36. [36]

      Drolet, F.; Fredrickson, G. H. Combinatorial screening of complex block copolymer assembly with self-consistent field theory. Phys. Rev. Lett. 1999, 83(21), 4317-4320.  doi: 10.1103/PhysRevLett.83.4317

    37. [37]

      Drolet, F.; Fredrickson, G. H. Optimizing chain bridging in complex block copolymers. Macromolecules 2001, 34(15), 5317-5324.  doi: 10.1021/ma0100753

    38. [38]

      Press W. H.; Flannery, B. P; Teukolsky, S. A.; Vettering, W. T. Numerical recipes. Cambridge Univeristy Press, Cambridge, England. 1989.

    39. [39]

      He, X. H.; Liang, H. J.; Huang, L.; Pan, C. Y. Complex microstructures of Amphiphilic diblock copolymer in dilute solution. J. Phys. Chem. B 2004, 108(5), 1731-1735.  doi: 10.1021/jp0359337

  • 加载中
    1. [1]

      Sifan DuYuan WangFulin WangTianyu WangLi ZhangMinghua Liu . Evolution of hollow nanosphere to microtube in the self-assembly of chiral dansyl derivatives and inversed circularly polarized luminescence. Chinese Chemical Letters, 2024, 35(7): 109256-. doi: 10.1016/j.cclet.2023.109256

    2. [2]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    3. [3]

      Yuanpeng Ye Longfei Yao Guofeng Liu . Engineering circularly polarized luminescence through symmetry manipulation in achiral tetraphenylpyrazine structures. Chinese Journal of Structural Chemistry, 2025, 44(2): 100460-100460. doi: 10.1016/j.cjsc.2024.100460

    4. [4]

      Jingqi XinShupeng HanMeichen ZhengChenfeng XuZhongxi HuangBin WangChangmin YuFeifei AnYu Ren . A nitroreductase-responsive nanoprobe with homogeneous composition and high loading for preoperative non-invasive tumor imaging and intraoperative guidance. Chinese Chemical Letters, 2024, 35(7): 109165-. doi: 10.1016/j.cclet.2023.109165

    5. [5]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    6. [6]

      Xuanyu WangZhao GaoWei Tian . Supramolecular confinement effect enabling light-harvesting system for photocatalytic α-oxyamination reaction. Chinese Chemical Letters, 2024, 35(11): 109757-. doi: 10.1016/j.cclet.2024.109757

    7. [7]

      Xian YanHuawei XieGao WuFang-Xing Xiao . Boosted solar water oxidation steered by atomically precise alloy nanocluster. Chinese Chemical Letters, 2025, 36(1): 110279-. doi: 10.1016/j.cclet.2024.110279

    8. [8]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

    9. [9]

      Zhenzhu WangChenglong LiuYunpeng GeWencan LiChenyang ZhangBing YangShizhong MaoZeyuan Dong . Differentiated self-assembly through orthogonal noncovalent interactions towards the synthesis of two-dimensional woven supramolecular polymers. Chinese Chemical Letters, 2024, 35(5): 109127-. doi: 10.1016/j.cclet.2023.109127

    10. [10]

      Cheng-Yan WuYi-Nan GaoZi-Han ZhangRui LiuQuan TangZhong-Lin Lu . Enhancing self-assembly efficiency of macrocyclic compound into nanotubes by introducing double peptide linkages. Chinese Chemical Letters, 2024, 35(11): 109649-. doi: 10.1016/j.cclet.2024.109649

    11. [11]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    12. [12]

      Zengchao GuoWeiwei LiuTengfei LiuJinpeng WangHui JiangXiaohui LiuYossi WeizmannXuemei Wang . Engineered exosome hybrid copper nanoscale antibiotics facilitate simultaneous self-assembly imaging and elimination of intracellular multidrug-resistant superbugs. Chinese Chemical Letters, 2024, 35(7): 109060-. doi: 10.1016/j.cclet.2023.109060

    13. [13]

      Changhui YuPeng ShangHuihui HuYuening ZhangXujin QinLinyu HanCaihe LiuXiaohan LiuMinghua LiuYuan GuoZhen Zhang . Evolution of template-assisted two-dimensional porphyrin chiral grating structure by directed self-assembly using chiral second harmonic generation microscopy. Chinese Chemical Letters, 2024, 35(10): 109805-. doi: 10.1016/j.cclet.2024.109805

    14. [14]

      Bing NiuHonggao HuangLiwei LuoLi ZhangJianbo Tan . Coating colloidal particles with a well-defined polymer layer by surface-initiated photoinduced polymerization-induced self-assembly and the subsequent seeded polymerization. Chinese Chemical Letters, 2025, 36(2): 110431-. doi: 10.1016/j.cclet.2024.110431

    15. [15]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

    16. [16]

      Xingwen Cheng Haoran Ren Jiangshan Luo . Boosting the self-trapped exciton emission in vacancy-ordered double perovskites via supramolecular assembly. Chinese Journal of Structural Chemistry, 2024, 43(6): 100306-100306. doi: 10.1016/j.cjsc.2024.100306

    17. [17]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    18. [18]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    19. [19]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    20. [20]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

Metrics
  • PDF Downloads(0)
  • Abstract views(669)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return