Citation: Zi-Guang Zhao, Yi-Chao Xu, Ruo-Chen Fang, Ming-Jie Liu. Bioinspired Adaptive Gel Materials with Synergistic Heterostructures[J]. Chinese Journal of Polymer Science, ;2018, 36(6): 683-696. doi: 10.1007/s10118-018-2105-z shu

Bioinspired Adaptive Gel Materials with Synergistic Heterostructures

  • Corresponding author: Ming-Jie Liu, liumj@buaa.edu.cn
  • Received Date: 22 November 2017
    Accepted Date: 22 December 2017
    Available Online: 8 February 2018

  • In nature, many biological soft tissues with synergistic heterostructures, such as sea cucumbers, skeletal muscles and cartilages, exhibit high functionality to adapt to complex environments. In artificial soft materials, hydrogels are similar to biological soft tissues due to the unique integration of "soft and wet" properties and elastic characteristics. However, currently hydrogel materials lack their necessary adaptability, including narrow working temperature windows and uncontrollable mechanics, thus restrict their engineering application in complex environments. Inspired by abovementioned biological soft tissues, researchers have increasingly developed heterostructural gel materials as functional soft materials with high adaptability to various mechanical and environmental conditions. This article summarizes our recent work on high-performance adaptive gel materials with synergistic heterostructures, including the critical design criteria and the state-of-the-art fabrication strategies of our gel materials. The functional adaptation properties of these heterostructural gel materials are also presented in details, including temperature, wettability, mechanical and shape adaption.
  • 加载中
    1. [1]

      Zhao Z., Fang R., Rong Q., Liu M.. Bioinspired nanocomposite hydrogels with highly ordered structures[J]. Adv. Mater., 2017,29(45). doi: 10.1002/adma.201703045

    2. [2]

      Slaughter B. V., Khurshid S. S., Fisher O. Z., Khademhosseini A., Peppas N. A.. Hydrogels in regenerative medicine[J]. Adv. Mater., 2009,21(32):3307-3329.  

    3. [3]

      Liu M., Wang S., Jiang L.. Nature-inspired superwettability systems[J]. Nat. Rev. Mater., 2017,217036. doi: 10.1038/natrevmats.2017.36

    4. [4]

      Chen L., Yin Y., Liu Y., Lin L., Liu M.. Design and fabrication of functional hydrogels through interfacial engineering[J]. Chinese J. Polym. Sci., 2017,35(10):1181-1193. doi: 10.1007/s10118-017-1995-5

    5. [5]

      Lee K. Y., Mooney D. J.. Hydrogels for tissue engineering[J]. Chem. Rev., 2001,101(7):1869-1880. doi: 10.1021/cr000108x

    6. [6]

      Taylor D. L., Panhuis M.. Self-healing hydrogels[J]. Adv. Mater., 2016,28(41):9060-9093. doi: 10.1002/adma.201601613

    7. [7]

      Yuk H., Lin S., Ma C., Takaffoli M., Fang N. X., Zhao X.. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water[J]. Nat. Commun., 2017,8. doi: 10.1038/ncomms14230

    8. [8]

      Lee B. P., Konst S.. Novel hydrogel actuator inspired by reversible mussel adhesive protein chemistry[J]. Adv. Mater., 2014,26(21):3415-3419. doi: 10.1002/adma.v26.21

    9. [9]

      Shin M. K., Spinks G. M., Shin S. R., Kim S. I., Kim S. J.. Nanocomposite hydrogel with high toughness for bioactuators[J]. Adv. Mater., 2009,21(17):1712-1715. doi: 10.1002/adma.v21:17

    10. [10]

      Shin S. R., Jung S. M., Zalabany M., Kim K., Zorlutuna P., Kim S. B., Nikkhah M., Khabiry M., Azize M., Kong J., Wan K. T., Palacios T., Dokmeci M. R., Bae H., Tang X., Khademhosseini A.. Carbon-nanotube-embedded hydrogel sheets for engineering cardiac constructs and bioactuators[J]. ACS Nano, 2013,7(3):2369-2380. doi: 10.1021/nn305559j

    11. [11]

      Culver H. R., Clegg J. R., Peppas N. A.. Analyte-responsive hydrogels:intelligent materials for biosensing and drug delivery[J]. Acc. Chem. Res., 2017,50(2):170-178. doi: 10.1021/acs.accounts.6b00533

    12. [12]

      Xing J. F., Zheng M. L., Duan X. M.. Two-photon polymerization microfabrication of hydrogels:an advanced 3D printing technology for tissue engineering and drug delivery[J]. Chem. Soc. Rev., 2015,44:5031-5039. doi: 10.1039/C5CS00278H

    13. [13]

      Wang P., Sun J., Lou Z., Fan F., Hu K., Sun Y., Gu N.. Assembly-induced thermogenesis of gold nanoparticles in the presence of alternating magnetic field for controllable drug release of hydrogel[J]. Adv. Mater., 2016,28(48):10801-10808. doi: 10.1002/adma.201603632

    14. [14]

      Liu J., Tan C. S., Yu Z., Lan Y., Abell C., Scherman O. A.. Biomimetic supramolecular polymer networks exhibiting both toughness and self-recovery[J]. Adv. Mater., 2017,29(10). doi: 10.1002/adma.201604951

    15. [15]

      Liu Z., Calvert P.. Multilayer hydrogels as muscle-like actuators[J]. Adv. Mater., 2000,12(4):288-291. doi: 10.1002/(ISSN)1521-4095

    16. [16]

      VanBemmelen J. M.. Der hydrogel und das kristallinische hydrat des kupferoxydes[J]. Z. Anorg. Chem., 1894,5:466-483. doi: 10.1002/(ISSN)1521-3749

    17. [17]

      Wichterle O., Lím D.. Hydrophilic gels for biological use[J]. Nature, 1960,185:117-118. doi: 10.1038/185117a0

    18. [18]

      Jokl J., Kopeček J., Lím D.. Mechanism of three-dimensional polymerization of the system methyl methacrylate-glycol dimethacrylate.Ⅰ. Determination of the structure of the threedimensional product[J]. J. Polym. Sci. A1 Polym. Chem., 1968,6(11):3041-3048. doi: 10.1002/pol.1968.150061108

    19. [19]

      Refojo M. F., Yasuda H.. Hydrogels from 2-hydroxyethyl methacrylate and propylene glycol monoacrylate[J]. J. Appl. Polym. Sci., 1965,9(7):2425-2435. doi: 10.1002/app.1965.070090707

    20. [20]

      Hicks G. P., Updike S. J.. The preparation and characterization of lyophilized polyacrylamide enzyme gels for chemical analysis[J]. Anal. Chem., 1966,38(6):726-730. doi: 10.1021/ac60238a014

    21. [21]

      Freeman A., Aharonowitz Y.. Immobilization of microbial cells in crosslinked, prepolymerized, linear polyacrylamide gels:antibiotic production by immobilized Streptomyces clavuligerus cells[J]. Biotechnol. Bioeng., 1981,23(12):2747-2759. doi: 10.1002/(ISSN)1097-0290

    22. [22]

      Otake K., Inomata H., Konno M., Saito S.. Thermal analysis of the volume phase transition with N-isopropylacrylamide gels[J]. Macromolecules, 1990,23(1):283-289. doi: 10.1021/ma00203a049

    23. [23]

      Inomata H., Goto S., Saito S.. Phase transition of N-substituted acrylamide gels[J]. Macromolecules, 1990,23(22):4887-4888. doi: 10.1021/ma00224a023

    24. [24]

      Dong L. C., Qi Y., Hoffman A. S.. Controlled release of amylase from a thermal and pH-sensitive, macroporous hydrogel[J]. J. Control. Release, 1992,19(1):171-177.  

    25. [25]

      Zhao X.. Multi-scale multi-mechanism design of tough hydrogels:building dissipation into stretchy networks[J]. Soft Matter, 2014,10:672-687. doi: 10.1039/C3SM52272E

    26. [26]

      Haraguchi K., Takehisa T., Ebato M.. Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels[J]. Biomacromolecules, 2006,7(11):3267-3275. doi: 10.1021/bm060549b

    27. [27]

      Haraguchi K., Li H. J.. Control of the coil-to-globule transition and ultrahigh mechanical properties of PNIPA in nanocomposite hydrogels[J]. Angew. Chem. Int. Ed., 2005,44(40):6500-6504. doi: 10.1002/(ISSN)1521-3773

    28. [28]

      Gong J. P., Katsuyama Y., Kurokawa T., Osada Y.. Doublenetwork hydrogels with extremely high mechanical strength[J]. Adv. Mater., 2003,15(14):1155-1158. doi: 10.1002/adma.200304907

    29. [29]

      Sun J. Y., Zhao X., Illeperuma W. R., Chaudhuri O., Oh K. H., Mooney D. J., Vlassak J. J., Suo Z.. Highly stretchable and tough hydrogels[J]. Nature, 2012,489:133-136. doi: 10.1038/nature11409

    30. [30]

      Rauner N., Meuris M., Zoric M., Tiller J. C.. Enzymatic mineralization generates ultrastiff and tough hydrogels with tunable mechanics[J]. Nature, 2017,543:407-410. doi: 10.1038/nature21392

    31. [31]

      Wang Q., Mynar J. L., Yoshida M., Lee E., Lee M., Okuro K., Kinbara K., Aida T.. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder[J]. Nature, 2010,463:339-343. doi: 10.1038/nature08693

    32. [32]

      Kamata H., Akagi Y., Kayasuga-Kariya Y., Chung U. I., Sakai T.. "Nonswellable" hydrogel without mechanical hysteresis[J]. Science, 2014,343(6173):873-875. doi: 10.1126/science.1247811

    33. [33]

      Liu M., Ishida Y., Ebina Y., Sasaki T., Hikima T., Takata M., Aida T.. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets[J]. Nature, 2015,517:68-72. doi: 10.1038/nature14060

    34. [34]

      Kim H. N., Jiao A., Hwang N. S., Kim M. S., Kang D. H., Kim D. H., Suh K. Y.. Nanotopography-guided tissue engineering and regenerative medicine[J]. Adv. Drug. Delivery Rev., 2013,65(4):536-558. doi: 10.1016/j.addr.2012.07.014

    35. [35]

      Liu M., Jiang L.. Dialectics of nature in materials science:binary cooperative complementary materials[J]. Sci. China Mater., 2016,59(4):239-246. doi: 10.1007/s40843-016-5051-6

    36. [36]

      Oliva N., Conde J., Wang K., Artzi N.. Designing hydrogels for on-demand therapy[J]. Acc. Chem. Res., 2017,50(4):669-679. doi: 10.1021/acs.accounts.6b00536

    37. [37]

      Dou X. Q., Feng C. L.. Amino acids and peptide-based supramolecular hydrogels for three-dimensional cell culture[J]. Adv. Mater., 2017,29(16)1604062. doi: 10.1002/adma.201604062

    38. [38]

      Wegst U. G., Bai H., Saiz E., Tomsia A. P., Ritchie R. O.. Bioinspired structural materials[J]. Nat. Mater., 2015,14:23-36. doi: 10.1038/nmat4089

    39. [39]

      Motokawa T.. Effects of ionic environment on viscosity of Triton-extracted catch connective tissue of a sea cucumber body wall[J]. Comp. Biochem. Physiol. Part B, 1994,109(4):613-622. doi: 10.1016/0305-0491(94)90124-4

    40. [40]

      Thurmond F. A., Trotter J. A.. Morphology and biomechanics of the microfibrillar network of sea cucumber dermis[J]. J. Exp. Biol., 1996,199:1817-1828.  

    41. [41]

      Szulgit G. K., Shadwick R. E.. Dynamic mechanical characterization of a mutable collagenous tissue:response of sea cucumber dermis to cell lysis and dermal extracts[J]. J. Exp. Biol., 2000,203(10):1539-1550.  

    42. [42]

      Capadona J. R., Shanmuganathan K., Tyler D. J., Rowan S. J., Weder C.. Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis[J]. Science, 2008,319(5868):1370-1374. doi: 10.1126/science.1153307

    43. [43]

      Mo J., Prévost S. F., Blowes L. M., Egertová M., Terrill N. J., Wang W., Elphick M. R., Gupta H. S.. Interfibrillar stiffening of echinoderm mutable collagenous tissue demonstrated at the nanoscale[J]. P. Natl. Acad. Sci. USA, 2016,113(42):E6362-E6371. doi: 10.1073/pnas.1609341113

    44. [44]

      Johnson M. A., Polgar J., Weightman D., Appleton D.. Data on the distribution of fibre types in thirty-six human muscles:an autopsy study[J]. J. Neurol. Sci., 1973,18(1):111-129. doi: 10.1016/0022-510X(73)90023-3

    45. [45]

      Tiidus, P. M., "Skeletal muscle damage and repair", Human Kinetics Press, Champaign, IL USA, 2008, p. 37

    46. [46]

      Wakelam M. J.. The fusion of myoblasts[J]. Biochem. J., 1985,228:1-12. doi: 10.1042/bj2280001

    47. [47]

      Wigmore P. M., Dunglison G. F.. The generation of fiber diversity during myogenesis[J]. Int. J. Dev. Biol., 1998,42(2):117-125.

    48. [48]

      Jana S., Levengood S. K., Zhang M.. Anisotropic materials for skeletal-muscle-tissue engineering[J]. Adv. Mater., 2016,28(48):10588-10612. doi: 10.1002/adma.201600240

    49. [49]

      Kerin A. J., Wisnom M. R., Adams M. A.. The compressive strength of articular cartilage[J]. Proc. Inst. Mech. Eng. Part H, 1998,212(4):273-280. doi: 10.1243/0954411981534051

    50. [50]

      Tepic S., Macirowski T., Mann R. W.. Mechanical properties of articular cartilage elucidated by osmotic loading and ultrasound[J]. Proc. Natl. Acad. Sci. USA, 1983,80(11):3331-3333. doi: 10.1073/pnas.80.11.3331

    51. [51]

      Fratzl P., Weinkamer R.. Nature's hierarchical materials[J]. Prog. Mater. Sci., 2007,52(8):1263-1334. doi: 10.1016/j.pmatsci.2007.06.001

    52. [52]

      Simha N. K., Carlson C. S., Lewis J. L.. Evaluation of fracture toughness of cartilage by micropenetration[J]. J. Mater. Sci. Mater. Med., 2004,15(5):631-639. doi: 10.1023/B:JMSM.0000026104.30607.c7

    53. [53]

      Ker R. F.. The design of soft collagenous load-bearing tissues[J]. J. Exp. Biol., 1999,202(23):3315-3324.  

    54. [54]

      Bellucci G., Seedhom B. B.. Mechanical behaviour of articular cartilage under tensile cyclic load[J]. Rheumatology, 2001,40(12):1337-1345. doi: 10.1093/rheumatology/40.12.1337

    55. [55]

      Salt R. W.. Survival of frozen fat body cells in an insect[J]. Nature, 1959,184:1426-1426.  

    56. [56]

      Thomashow M. F.. Plant cold acclimation:freezing tolerance genes and regulatory mechanisms[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1999,50:571-599. doi: 10.1146/annurev.arplant.50.1.571

    57. [57]

      Moellering E. R., Muthan B., Benning C.. Freezing tolerance in plants requires lipid remodeling at the outer chloroplast membrane[J]. Science, 2010,330(6001):226-228. doi: 10.1126/science.1191803

    58. [58]

      Takahashi D., Imai H., Kawamura Y., Uemura M.. Lipid profiles of detergent resistant fractions of the plasma membrane in oat and rye in association with cold acclimation and freezing tolerance[J]. Cryobiology, 2016,72(2):123-134. doi: 10.1016/j.cryobiol.2016.02.003

    59. [59]

      Martz F., Sutinen M. L., Kiviniemi S., Palta J. P.. Changes in freezing tolerance, plasma membrane H+-ATPase activity and fatty acid composition in Pinus resinosa needles during cold acclimation and de-acclimatio[J]. Tree Physiol., 2006,26(6):783-790. doi: 10.1093/treephys/26.6.783

    60. [60]

      Gao H., Zhao Z., Cai Y., Zhou J., Hua W., Chen L., Wang L., Zhang J., Han D., Liu M., Jiang L.. Adaptive and freezetolerant heteronetwork organohydrogels with enhanced mechanical stability over a wide temperature range[J]. Nat. Commun., 2017,8. doi: 10.1038/ncomms15911

    61. [61]

      Rong Q., Lei W., Chen L., Yin Y., Zhou J., Liu M.. Antifreezing, conductive self-healing organohydrogels with stable strain-sensitivity at subzero temperatures[J]. Angew. Chem. Int. Ed., 2017,129(45):14347-14351. doi: 10.1002/ange.201708614

    62. [62]

      Shi S., Peng X., Liu T., Chen Y. N., He C., Wang H.. Facile preparation of hydrogen-bonded supramolecular polyvinyl alcohol-glycerol gels with excellent thermoplasticity and mechanical properties[J]. Polymer, 2017,111(24):168-176.  

    63. [63]

      Shin J., Lee J. S., Lee C., Park H. J., Yang K., Jin Y., Ryu J. H., Hong K. S., Moon S. H., Chung H. M., Yang H. S., Um S. H., Oh J. W., Kim D. I., Lee H., Cho S. W.. Tissue adhesive catechol-modified hyaluronic acid hydrogel for effective, minimally invasive cell therapy[J]. Adv. Funct. Mater., 2015,25(25):3814-3824. doi: 10.1002/adfm.v25.25

    64. [64]

      Liu Y., Meng H., Konst S., Sarmiento R., Rajachar R., Lee B. P.. Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity[J]. ACS Appl. Mater. Interfaces, 2014,6(19):16982-16992. doi: 10.1021/am504566v

    65. [65]

      Lee Y. B., Shin Y. M., Kim E. M., Lim J., Lee J. Y., Shin H.. Facile cell sheet harvest and translocation mediated by a thermally expandable hydrogel with controlled cell adhesion[J]. Adv. Healthc. Mater., 2016,5(18):2320-2324. doi: 10.1002/adhm.v5.18

    66. [66]

      Thornton D. J., Sheehan J. K.. From mucins to mucus:toward a more coherent understanding of this essential barrier[J]. Proc. Am. Thorac. Soc., 2004,1(1):54-61. doi: 10.1513/pats.2306016

    67. [67]

      Weis K.. The nuclear pore complex:oily spaghetti or gummy bear?[J]. Cell, 2007,130(3):405-407. doi: 10.1016/j.cell.2007.07.029

    68. [68]

      Yao X., Chen L., Ju J., Li C., Tian Y., Jiang L., Liu M.. Superhydrophobic diffusion barriers for hydrogels via confined interfacial modification[J]. Adv. Mater., 2016,28(34):7383-7389. doi: 10.1002/adma.201601568

    69. [69]

      Chen L., Yao X., Gu Z., Zheng K., Zhao C., Lei W., Rong Q., Lin L., Wang J., Jiang L., Liu M.. Covalent tethering of photo-responsive superficial layers on hydrogel surfaces for photo-controlled release[J]. Chem. Sci., 2017,8:2010-2016. doi: 10.1039/C6SC04634G

    70. [70]

      Chen H., Yang F. Y., Chen Q., Zheng J.. A novel design of multi-mechanoresponsive and mechanically strong hydrogels[J]. Adv. Mater., 2017,29(21). doi: 10.1002/adma.201606900

    71. [71]

      Bilici C., Can V., Nçchel U., Behl M., Lendlein A., Okay O.. Melt-processable shape-memory hydrogels with self-healing ability of high mechanical strength[J]. Macromolecules, 2016,49(19):7442-7449. doi: 10.1021/acs.macromol.6b01539

    72. [72]

      Luo R. C., Wu J., Dinh N. D., Chen C. H.. Gradient porous elastic hydrogels with shape-memory property and anisotropic responses for programmable locomotion[J]. Adv. Funct. Mater., 2015,25(47):7272-7279. doi: 10.1002/adfm.v25.47

    73. [73]

      Wang W., Zhang Y. Y., Liu W. G.. Bioinspired fabrication of high strength hydrogels from non-covalent interactions[J]. Prog. Polym. Sci., 2017,71:1-25. doi: 10.1016/j.progpolymsci.2017.04.001

    74. [74]

      Dai X. Y., Zhang Y. Y., Gao L. N., Bai T., Wang W., Cui Y. L., Liu W. G.. A mechanically strong, highly stable, thermoplastic, and self-healable supramolecular polymer hydrogel[J]. Adv. Mater., 2015,27(23):3566-3571. doi: 10.1002/adma.v27.23

    75. [75]

      Lu C. H., Guo W., Hu Y., Qi X. J., Willner I.. Multitriggered shape-memory acrylamide-DNA hydrogels[J]. J. Am. Chem. Soc., 2015,137(50):15723-15731. doi: 10.1021/jacs.5b06510

    76. [76]

      Zhao Z., Zhang K., Liu Y., Zhou J., Liu M.. Highly stretchable, shape memory organohydrogels using phasetransition microinclusions[J]. Adv. Mater., 2017,29(33)1701695. doi: 10.1002/adma.v29.33

    77. [77]

      Zhao Z., Liu Y., Zhang K., Zhuo S., Fang R., Zhang J., Jiang L., Liu M.. Biphasic synergistic gel materials with switchable mechanics and self-healing capacity[J]. Angew. Chem. Int. Ed., 2017,129(43):13649-13654. doi: 10.1002/ange.201707239

    78. [78]

      Kim Y. S., Liu M., Ishida Y., Ebina Y., Osada M., Sasaki T., Hikima T., Takata M., Aida T.. Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel[J]. Nat. Mater., 2015,14:1002-1007. doi: 10.1038/nmat4363

    79. [79]

      Liu M., Ishida Y., Ebina Y., Sasaki T., Aida T.. Photolatently modulable hydrogels using unilamellar titania nanosheets as photocatalytic crosslinkers[J]. Nat. Commun., 2013,42029. doi: 10.1038/ncomms3029

  • 加载中
    1. [1]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    2. [2]

      Binhan ZhaoZheng LiLan ZhengZhichao YeYuyang YuanShanshan ZhangBo LiangTianyu Li . Recent progress in the biomedical application of PEDOT:PSS hydrogels. Chinese Chemical Letters, 2024, 35(10): 109810-. doi: 10.1016/j.cclet.2024.109810

    3. [3]

      Zikang HuHengjie ZhangZhengqiu LiTianbao ZhaoZhipeng GuQijuan YuanBaoshu Chen . Multifunctional photothermal hydrogels: Design principles, various functions, and promising biological applications. Chinese Chemical Letters, 2024, 35(10): 109527-. doi: 10.1016/j.cclet.2024.109527

    4. [4]

      Zhenhao WangYuliang TangRuyu LiShuai TianYu TangDehai Li . Bioinspired synthesis of cochlearol B and ganocin A. Chinese Chemical Letters, 2024, 35(7): 109247-. doi: 10.1016/j.cclet.2023.109247

    5. [5]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    6. [6]

      Pei CaoYilan WangLejian YuMiao WangLiming ZhaoXu Hou . Dynamic asymmetric mechanical responsive carbon nanotube fiber for ionic logic gate. Chinese Chemical Letters, 2024, 35(6): 109421-. doi: 10.1016/j.cclet.2023.109421

    7. [7]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    8. [8]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    9. [9]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    10. [10]

      Shaohua ZhangLiyao LiuYingqiao MaChong-an Di . Advances in theoretical calculations of organic thermoelectric materials. Chinese Chemical Letters, 2024, 35(8): 109749-. doi: 10.1016/j.cclet.2024.109749

    11. [11]

      Junjie WangYan WangZhengdong LiChangqiang XieMusammir KhanXingzhou PengFabiao Yu . Triphenylamine-AIEgens photoactive materials for cancer theranostics. Chinese Chemical Letters, 2024, 35(6): 108934-. doi: 10.1016/j.cclet.2023.108934

    12. [12]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    13. [13]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    14. [14]

      Chao Ma Cong Lin Jian Li . MicroED as a powerful technique for the structure determination of complex porous materials. Chinese Journal of Structural Chemistry, 2024, 43(3): 100209-100209. doi: 10.1016/j.cjsc.2023.100209

    15. [15]

      Yuhan Wu Qing Zhao Zhijie Wang . Layered vanadium oxides: Promising cathode materials for calcium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(5): 100271-100271. doi: 10.1016/j.cjsc.2024.100271

    16. [16]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    17. [17]

      Gaojie ZhuZhen YangShijun LiWeihua ZhuRui CaoJunlong ZhangJianzhang ZhaoJonathan L. SesslerXunjin ZhuJianxin SongYongshu XieJianzhuang Jiang . The 2nd Asian Conference on Porphyrins, Phthalocyanines and Related Materials. Chinese Chemical Letters, 2024, 35(7): 109535-. doi: 10.1016/j.cclet.2024.109535

    18. [18]

      Yuqing ZhuHaohao ChenLi WangLiqun YeHoule ZhouQintian PengHuaiyong ZhuYingping Huang . Piezoelectric materials for pollutants degradation: State-of-the-art accomplishments and prospects. Chinese Chemical Letters, 2024, 35(4): 108884-. doi: 10.1016/j.cclet.2023.108884

    19. [19]

      Fangling Cui Zongjie Hu Jiayu Huang Xiaoju Li Ruihu Wang . MXene-based materials for separator modification of lithium-sulfur batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100337-100337. doi: 10.1016/j.cjsc.2024.100337

    20. [20]

      Yue Wang Caixia Xu Xingtao Tian Siyu Wang Yan Zhao . Challenges and Modification Strategies of High-Voltage Cathode Materials for Li-ion Batteries. Chinese Journal of Structural Chemistry, 2023, 42(10): 100167-100167. doi: 10.1016/j.cjsc.2023.100167

Metrics
  • PDF Downloads(0)
  • Abstract views(566)
  • HTML views(0)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return