Citation: Zhong-Fu Zhao, Pei-Ying Liu, Chun-Qing Zhang, Wei Liu, Yan-Hui Wang, Tao Tang, Yi-Fu Ding, Yan-Dong Zhang, Fan-Zhi Meng. Synthesis and Properties of SEPS-g-PEO Copolymers with Varying Branch Lengths[J]. Chinese Journal of Polymer Science, ;2018, 36(8): 934-942. doi: 10.1007/s10118-018-2104-0 shu

Synthesis and Properties of SEPS-g-PEO Copolymers with Varying Branch Lengths

  • Corresponding author: Zhong-Fu Zhao, zfzhao@dlut.edu.cn Tao Tang, ttang@ciac.jl.cn
  • Received Date: 24 October 2017
    Accepted Date: 19 December 2017
    Available Online: 7 March 2018

  • Poly(ethylene oxide) (PEO) was controllably grafted from styrene-b-(ethylene-co-propylene)-b-styrene (SEPS) backbones by combining lithiation of styrenic units and living monomer-activated anionic ring-opening polymerization of ethylene oxide (EO) monomers with the aid of co-initiators triisobutyl aluminum. The as-synthesized SEPS-g-PEO copolymers were characterized by SEC, 1H-NMR, FTIR, SAXS, AFM and DSC. When the branch length is relatively small, increase of PEO fraction leads to the increase of the correlation length between neighboring hard domains, but the degree of correlation reduces. When the branch length is relatively large, the phase-separated structures become random both in terms of size and spatial correlation, and macro-phase separated structures appear. The crystallization behavior of the PEO branches can be effectively inhibited in SEPS-g-PEO, so no significant crystallization takes place until the fraction of PEO branches is 20.1 wt%, which greatly promotes the rapid delivery of hydrophilic drugs in the hot-melting pressure-sensitive adhesives (HMPSAs) based on SEPS-g-PEO. Their cumulative release amount of a model drug could achieve 80%, more than twice the value in the HMPSAs based on linear PEO-containing styrenic block copolymers.
  • 加载中
    1. [1]

      Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3(38), 19218−19253  doi: 10.1039/C5TA03471J

    2. [2]

      Bouchet, R.; Phan, T. N. T.; Beaudoin, E. D. Devaux; Davidson, P.; Bertin, D.; Denoyel, R. Charge transport in nanostructured PS-PEO-PS triblock copolymer electrolytes. Macromolecules 2014, 47(8), 2659−2665  doi: 10.1021/ma500420w

    3. [3]

      Pulst, M.; Samiullah, M. H.; Baumeister, U.; Marko, P.; Jens, B.; Thomas, T.; Karsten, B.; Yury, G.; Detlef, R.; Jörg, K. Crystallization of poly(ethylene oxide) with a well-defined point defect in the middle of the polymer chain. Macromolecules 2016, 49(17), 6609−6620  doi: 10.1021/acs.macromol.6b01107

    4. [4]

      Chen, X. C.; Oh, H. J.; Yu, J. F.; Jeffrey, K. Y.; Nikos, P.; Anand, S. P.; Steven, W. H.; Nitash, P. B. Block copolymer membranes for efficient capture of a chemotherapy drug. ACS Macro Lett. 2016, 5(8), 936−941  doi: 10.1021/acsmacrolett.6b00459

    5. [5]

      Kim, J. M.; Kim, Y. J.; Park, W. I. Eliminating the trade-off between the throughput and pattern quality of sub nm directed selfassembly via warm solvent annealing. Adv. Funct. Mater. 2015, 25(2), 306−315  doi: 10.1002/adfm.v25.2

    6. [6]

      Feng, C.; Pang, X.; He, Y.; Li, B.; Lin, Z. Robust route to unimolecular core-shell and hollow polymer nanoparticles. Chem. Mater. 2014, 26(20), 6058−6067  doi: 10.1021/cm503108z

    7. [7]

      Chen, Y.; Yang, D.; Yoon, Y. J.; Pang, X.; Wang, Z.; Jung, J.; He, Y.; Harn, Y. W.; He, M.; Zhang, S.; Zhang, G.; Lin, Z. Hairy uniform permanently ligated hollow nanoparticles with precise dimension control and tunable optical properties. J. Am. Chem. Soc. 2017, 139, 12956−12967  doi: 10.1021/jacs.7b04545

    8. [8]

      Feng, C.; Pang, X.; He, Y.; Chen, Y.; Zhang, G.; Lin, Z. A versatile strategy for uniform hybrid nanoparticles and nanocapsules. Polym. Chem. 2015, 6(29), 5190−5197  doi: 10.1039/C5PY00765H

    9. [9]

      Bates, F. S.; Hillmyer, M. A.; Lodge, T. P. Multiblock polymers: panacea or dandora's box. Science 2015, 336(6080), 434−440

    10. [10]

      Holden, G.; Kricheldorf, H. R.; Quirk, R. in "Handbook of thermoplastic elastomers Vol.1, Chapter 4" Munich: Germany, 2004, p. 36-37.

    11. [11]

      Zhang, X, L.; Wu, H.; Guo, S. Y. The molecular structure of SEBS grafted with maleic anhydride through ultrasound initiation. Chinese J. Polym. Sci. 2015, 33(7), 988−999  doi: 10.1007/s10118-015-1645-8

    12. [12]

      Shi, W.; Hamilton, A. L.; Delaney, K. T.; Fredrickson, G.H.; Kramer, E. J.; Ntaras, C.; Avgeropoulos, A.; Lynd, N. A. Creating extremely asymmetric lamellar structures via fluctuation-assisted unbinding of miktoarm star block copolymer alloys. J. Am. Chem. Soc. 2015, 137(19), 6160−6163  doi: 10.1021/jacs.5b02881

    13. [13]

      Zhao, Y.; Su, B.; Chen, F. Evolution of unique nano-cylindrical structure in poly(styrene-b-isoprene-b-styrene) prepared under "dynamic packing injection moulding. Soft Matter 2015, 11(11), 2300−2307  doi: 10.1039/C4SM02463J

    14. [14]

      Garate, H.; Goyanes, S.; D'Accorso, N. B. Controlling nanodomain morphology of epoxy thermosets modified with reactive amine-containing epoxidized poly(styrene-b-isoprene-b-styrene) block copolymer. Macromolecules 2014, 47(21), 7416−7423  doi: 10.1021/ma501496x

    15. [15]

      Luo, M.; Seppala, J. E.; Albert, J. N. L. Manipulating nanoscale morphologies in cylinder-forming poly (styrene-b-isoprene-b-styrene) thin films using film thickness and substrate surface chemistry gradients. Macromolecules 2013, 46(5), 1803−1811  doi: 10.1021/ma302410q

    16. [16]

      Garate, H.; Fascio, M. L.; Mondragon, I. Surfactant-aided dispersion of polystyrene-functionalized carbon nanotubes in a nanostructured poly(styrene-b-isoprene-b-styrene) block copolymer. Polymer 2011, 52(10), 2214−2220  doi: 10.1016/j.polymer.2011.03.032

    17. [17]

      Garate, H.; Mondragon, I.; D'Accorso, N. B. Exploring microphase separation behavior of epoxidized poly(styrene-b-isoprene-b-styrene) block copolymer inside thin epoxy coatings. Macromolecules 2013, 46(6), 2182−2187  doi: 10.1021/ma4000144

    18. [18]

      Song, J.; Remmers, S. J.; Shao, J.; Kolwijck, E.; Walboomers, X. F.; Jansen, J. A.; Leeuwenburgh, S. C.; Yang, F. Antibacterial effects of electrospun chitosan/poly(ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver. Nanomedicine: NBM 2016, 12(5), 1357−1364

    19. [19]

      Villaluenga, I.; Xi, C. C.; Devaux, D. Nanoparticle-driven assembly of highly conducting hybrid block ccopolymer electrolytes. Macromolecules 2015, 48(2), 358−364  doi: 10.1021/ma502234y

    20. [20]

      Yuan, R.; Teran, A. A.; Gurevitch, I. Ionic conductivity of low molecular weight block copolymer electrolytes. Macromolecules 2013, 46(3), 914−921  doi: 10.1021/ma3024552

    21. [21]

      Chintapalli, M.; Le, T. N. P.; Venkatesan, N. R. Structure and ionic conductivity of polystyrene-block-poly(ethylene oxide) electrolytes in the high salt concentration limit. J. Mater. Sci. 1997, 43(5), 1734−1739

    22. [22]

      Gosecki, M.; Gadzinowski, M.; Gosecka, M. Polyglycidol, its derivatives, and polyglycidol-containing copolymers—synthesis and medical applications. Polymers 2016, 8(6), 227  doi: 10.3390/polym8060227

    23. [23]

      Rejsek, V.; Desbois, P.; Deffieux, A. Polymerization of ethylene oxide initiated by lithium derivatives via the monomer-activated approach: application to the direct synthesis of PS-b-PEO and PI-b-PEO diblock copolymers. Polymer 2010, 51(24), 5674−5679  doi: 10.1016/j.polymer.2010.09.061

    24. [24]

      Zhang, J.; Sides, S.; Bates, F. S. Ordering of sphere forming SISO tetrablock terpolymers on a simple hexagonal lattice. Macromolecules 2012, 45(1), 256−265  doi: 10.1021/ma202196c

    25. [25]

      Zhang, J.; Bates, F. S. Dodecagonal quasicrystalline morphology in a poly(styrene-b-isoprene-b-styrene-b-ethylene oxide) tetrablock terpolymer. J. Am. Chem. Soc. 2015, 134(18), 7636−7639

    26. [26]

      Bates, F. S.; Bluemle, M.; Zhang, J. Phase behavior of multblock terpolymers. Aiche Meeting 2010.

    27. [27]

      Chanpuriya, S.; Kim, K.; Zhang, J. A cornucopia of nanoscale ordered phases in sphere forming tetrablock terpolymers. ACS Nano 2016, 10(5), 4961−4972  doi: 10.1021/acsnano.6b00495

    28. [28]

      Percec, V.; Ungar, G.; Peterca, M. Chemistry. self-assembly in action. Science 2006, 313(5783), 55−56  doi: 10.1126/science.1129512

    29. [29]

      Meuler, A. J.; Fleury, G.; Hillmyer, M. A. Structure and mechanical properties of an O70 (Fddd) network-forming pentablock terpolymer. Macromolecules 2008, 41(15), 5809−5817  doi: 10.1021/ma800885s

    30. [30]

      Zhao, Z.; Zhang, R.; Zhang, C. SISO-based hot-melt pressure-sensitive adhesives for transdermal delivery of hydrophilic drugs. Int. J. Adhes. Adhes. 2017, 74, 86−91  doi: 10.1016/j.ijadhadh.2016.11.003

    31. [31]

      Yang, C.; Wang, S.; Ma, W. Highly stable poly(ethylene glycol)-grafting alkaline anion exchange membranes. J. Mater. Chem. A 2016, 4(10), 3886−3892  doi: 10.1039/C6TA00200E

    32. [32]

      Chung, T. C.; Lu, H. L.; Ding, R. D. Synthesis of polyethylene-g-polystyrene and polyethylene-g-poly(p-methylstyrene) graft copolymers. Macromolecules 1997, 30(5), 1272−1278  doi: 10.1021/ma9614003

    33. [33]

      Farrall M. J.; Frechet J. M. J. Bromination and lithiation: two important steps in the functionalization of polystyrene resins. J. Appl. Polym. Sci. 1990, 40(9-10), 1575−1582

    34. [34]

      Wu, S.; Guo, Q.; Peng, S. Toughening epoxy thermosets with block ionomer complexes: A nanostructure- mechanical property correlation. Macromolecules 2012, 45(9), 3829−3840  doi: 10.1021/ma300458y

    35. [35]

      Kripotou, S.; Psylla, C.; Kyriakos, K. Structure and crystallization behavior of poly(ethylene oxide) (PEO) chains in core-shell brush copolymers with poly(propylene oxide)-block-poly(ethylene oxide) side chains. Macromolecules 2016, 49(16), 5963−5977  doi: 10.1021/acs.macromol.6b00879

    36. [36]

      Ashman, P. C.; Booth, C. Crystallinity and fusion of ethylene oxide/propylene oxide block copolymers: 1. type PE copolymers. Polymer 1975, 16(12), 889−896  doi: 10.1016/0032-3861(75)90209-8

    37. [37]

      Beaudoin, E.; Phan, T. N.; Robinet, M. Effect of interfaces on the melting of PEO confined in triblock PS-b-PEO-b-PS copolymers. Langmuir 2013, 29(34), 10874−10880  doi: 10.1021/la401889h

    38. [38]

      Lin, F.; Wu, C.; Cui, D. Synthesis and characterization of crystalline styrene-b-(ethylene-co-butylene)‐b‐styrene triblock copolymers. J. Polym. Sci., Part A: Polym. Chem. 2017, 55(7), 1243−1249  doi: 10.1002/pola.v55.7

  • 加载中
    1. [1]

      Linghui ZouMeng ChengKaili HuJianfang FengLiangxing Tu . Vesicular drug delivery systems for oral absorption enhancement. Chinese Chemical Letters, 2024, 35(7): 109129-. doi: 10.1016/j.cclet.2023.109129

    2. [2]

      Zhilong XieGuohui ZhangYa MengYefei TongJian DengHonghui LiQingqing MaShisong HanWenjun Ni . A natural nano-platform: Advances in drug delivery system with recombinant high-density lipoprotein. Chinese Chemical Letters, 2024, 35(11): 109584-. doi: 10.1016/j.cclet.2024.109584

    3. [3]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    4. [4]

      Makhloufi ZoulikhaZhongjian ChenJun WuWei He . Approved delivery strategies for biopharmaceuticals. Chinese Chemical Letters, 2025, 36(2): 110225-. doi: 10.1016/j.cclet.2024.110225

    5. [5]

      Jing ZhangCharles WangYaoyao ZhangHaining XiaYujuan WangKun MaJunfeng Wang . Application of magnetotactic bacteria as engineering microrobots: Higher delivery efficiency of antitumor medicine. Chinese Chemical Letters, 2024, 35(10): 109420-. doi: 10.1016/j.cclet.2023.109420

    6. [6]

      Tong TongLezong ChenSiying WuZhong CaoYuanbin SongJun Wu . Establishment of a leucine-based poly(ester amide)s library with self-anticancer effect as nano-drug carrier for colorectal cancer treatment. Chinese Chemical Letters, 2024, 35(12): 109689-. doi: 10.1016/j.cclet.2024.109689

    7. [7]

      Jiaqi HuangRenjiang KongYanmei LiNi YanYeyang WuZiwen QiuZhenming LuXiaona RaoShiying LiHong Cheng . Feedback enhanced tumor targeting delivery of albumin-based nanomedicine to amplify photodynamic therapy by regulating AMPK signaling and inhibiting GSTs. Chinese Chemical Letters, 2024, 35(8): 109254-. doi: 10.1016/j.cclet.2023.109254

    8. [8]

      Lihang WangMary Li JavierChunshan LuoTingsheng LuShudan YaoBing QiuYun WangYunfeng Lin . Research advances of tetrahedral framework nucleic acid-based systems in biomedicine. Chinese Chemical Letters, 2024, 35(11): 109591-. doi: 10.1016/j.cclet.2024.109591

    9. [9]

      Yong-Dan ZhaoYidan WangRongrong WangLina ChenHengtong ZuoXi WangJihong QiangGeng WangQingxia LiCanqi PingShuqiu ZhangHao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929

    10. [10]

      Keyang LiYanan WangYatao XuGuohua ShiSixian WeiXue ZhangBaomei ZhangQiang JiaHuanhua XuLiangmin YuJun WuZhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511

    11. [11]

      Yuanzheng WangChen ZhangShuyan HanXiaoli KongChangyun QuanJun WuWei Zhang . Cancer cell membrane camouflaged biomimetic gelatin-based nanogel for tumor inhibition. Chinese Chemical Letters, 2024, 35(11): 109578-. doi: 10.1016/j.cclet.2024.109578

    12. [12]

      Yinglan YuSajid HussainJianping QiLei LuoXuemei Zhang . Mechanisms and applications: Cargos transport to basolateral membranes in polarized epithelial cells. Chinese Chemical Letters, 2024, 35(12): 109673-. doi: 10.1016/j.cclet.2024.109673

    13. [13]

      Han WuYumei WangZekai RenHailin CongYouqing ShenBing Yu . The nanocarrier strategy for crossing the blood-brain barrier in glioma therapy. Chinese Chemical Letters, 2025, 36(4): 109996-. doi: 10.1016/j.cclet.2024.109996

    14. [14]

      Fengjie LiuFansu MengZhenjiang YangHuan WangYuehong RenYu CaiXingwang Zhang . Exosome-biomimetic nanocarriers for oral drug delivery. Chinese Chemical Letters, 2024, 35(9): 109335-. doi: 10.1016/j.cclet.2023.109335

    15. [15]

      Yujie LiYa-Nan WangYin-Gen LuoHongcai YangJinrui RenXiao Li . Advances in synthetic biology-based drug delivery systems for disease treatment. Chinese Chemical Letters, 2024, 35(11): 109576-. doi: 10.1016/j.cclet.2024.109576

    16. [16]

      Wenjun Yang Qiaoling Tan Wenjiao Xie Xiaoyu Pan Youyong Yuan . Construction and Characterization of Calcium Alginate Microparticle Drug Delivery System: A Novel Design and Teaching Practice in Polymer Experiments. University Chemistry, 2025, 40(3): 371-380. doi: 10.12461/PKU.DXHX202405150

    17. [17]

      Ningyue XuJun WangLei LiuChangyang Gong . Injectable hydrogel-based drug delivery systems for enhancing the efficacy of radiation therapy: A review of recent advances. Chinese Chemical Letters, 2024, 35(8): 109225-. doi: 10.1016/j.cclet.2023.109225

    18. [18]

      Yi CaoXiaojiao GeYuanyuan WeiLulu HeAiguo WuJuan Li . Tumor microenvironment-activatable neuropeptide-drug conjugates enhanced tumor penetration and inhibition via multiple delivery pathways and calcium deposition. Chinese Chemical Letters, 2024, 35(4): 108672-. doi: 10.1016/j.cclet.2023.108672

    19. [19]

      Jiechen LiuXiaoguang LiRuiyang XiaYuqi WangFenghe ZhangYongzhi PangQing Li . Efficient suppression of oral squamous cell carcinoma through spatial dimension conversion drug delivery systems-enabled immunomodulatory-photodynamic therapy. Chinese Chemical Letters, 2024, 35(12): 109619-. doi: 10.1016/j.cclet.2024.109619

    20. [20]

      Yueying WangJianming XiongLinwei XinYuanyuan LiHe HuangWenjun Miao . Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing. Chinese Chemical Letters, 2025, 36(4): 110003-. doi: 10.1016/j.cclet.2024.110003

Metrics
  • PDF Downloads(0)
  • Abstract views(812)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return