Citation: Yao Xu, Chen-Guang Liu, Hua-Rong Nie, Ai-Hua He. Fractionated and Confined Crystallization of Polybutene-1 in Immiscible Polypropylene/Polybutene-1 Blends[J]. Chinese Journal of Polymer Science, ;2018, 36(7): 859-865. doi: 10.1007/s10118-018-2103-1 shu

Fractionated and Confined Crystallization of Polybutene-1 in Immiscible Polypropylene/Polybutene-1 Blends

  • In this work, the crystallization of immiscible polypropylene (PP)/polybutene-1 (PB) blends, in particular the effect of crystal morphology of PP (HTC, high Tm component) on the subsequent crystallization behavior of PB (LTC, low Tm component) was studied. Herein, we firstly indicated that PP/PB blends were not completely compatible but characterized as the LCST-like phase diagram above the melting temperature of PP. Crystallization of PP at different crystallization temperatures brought about different PP crystal morphologies and PB was segregated and confined at different locations. Much larger-sized domain of PB component appeared in PP spherulites resulting from the effects of non-negligible phase separation and the slower PP crystallization rate as PP crystallized at high temperature. As temperature continued to fall below Tm of PB, the fractionated and confined crystallization of PB occurred in the framework of PP spherulites, reflected by the decreased crystallization temperature (Tc) of PB and the formation of form I′ beside form II. Notably, if PP previously crystallized at high Tc, fractionated crystallization of PB became predominant and confined crystallization of PB became weak due to the much wider droplet-size distribution of PB domains.
  • 加载中
    1. [1]

      Luciani, L.; Seppälä, J.; Löfgren, B. Poly-1-butene: its preparation, properties and challenges. Prog. Polym. Sci. 1988, 13(1), 37-62.  doi: 10.1016/0079-6700(88)90010-X

    2. [2]

      Jones, A. T.; Aizlewood, J. M.; Beckett, D. R. Crystalline forms of isotactic polypropylene. Macromol. Chem. Phys. 2010, 75(1), 134-158.

    3. [3]

      Siegmann, A. Crystallization of crystalline/crystalline blends: polypropylene/polybutene-1. J. Appl. Polym. Sci. 1982, 27(3), 1053-1056.  doi: 10.1002/app.1982.070270324

    4. [4]

      Lee, M. S. The polymer-polymer interaction parameter in polybutene-1/polypropylene blends. J. Polym. Res. 1996, 3(4), 235-258.  doi: 10.1007/BF01493493

    5. [5]

      Ji, Y.; Su, F.; Li, L. B. Mixing assisted direct formation of isotactic poly(1-butene) form I′ crystals from blend melt of isotactic poly(1-butene)/polypropylene. Macromolecules 2016, 49, 1761-1769.  doi: 10.1021/acs.macromol.5b02161

    6. [6]

      Tol, R. T.; Mathot, V. B. F.; Groeninckx, G. Confined crystallization phenomena in immiscible polymer blends with dispersed micro and nanometer sized PA6 droplets, part 2: reactively compatibilized PS/PA6 and (PPE/PS)/PA6 blends. Polymer 2005, 46(2), 383-396.  doi: 10.1016/j.polymer.2004.10.070

    7. [7]

      He, Z.; Liang, Y.; Han, C. C. Confined nucleation and growth of poly(ethylene oxide) on the different crystalline morphology of poly(butylene succinate) from a miscible blend. Macromolecules 2013, 46(20), 8264-8274.  doi: 10.1021/ma4015214

    8. [8]

      Qiu, Z.; Yan, C.; Lu, J.; Yang, W. Miscible crystalline/crystalline polymer blends of poly(vinylidene fluoride) and poly(butylenes succinate-co-butylene adipate): spherulitic morphologies and crystallization kinetics. Macromolecules 2007, 40, 5047-5053.  doi: 10.1021/ma070255y

    9. [9]

      He, Y.; Zhu, B.; Kai, W.; Inoue, Y. Nanoscale-confined and fractional crystallization of poly(ethylene oxide) in the interlamellar region of poly(butylene succinate). Macromolecules 2004, 37, 3337-3345.  doi: 10.1021/ma035886g

    10. [10]

      He, Y.; Zhu, B.; Kai, W.; Inoue, Y. Effects of crystallization condition of poly(butylene succinate) component on the crystallization of poly(ethylene oxide) component in their miscible blends. Macromolecules 2004, 37, 8050-8056.  doi: 10.1021/ma049482f

    11. [11]

      Yordanov, C.; Minkova, L. Fractionated crystallization of compatibilized LDPE/PA6 blends. Eur. Polym. J. 2005, 41(3), 527-534.  doi: 10.1016/j.eurpolymj.2004.10.034

    12. [12]

      Pompe, G.; Pötschke, P.; Pionteck, J. Reactive melt blending of modified polyamide and polypropylene: assessment of compatibilization by fractionated crystallization and blend morphology. J. Appl. Polym. Sci. 2002, 86(13), 3445-3453.  doi: 10.1002/app.v86:13

    13. [13]

      Arnal, M. L.; Müller, A. J.; Maiti, P.; Hikosaka, M. Nucleation and crystallization of isotactic poly(propylene) droplets in an immiscible polystyrene matrix. Macromol. Chem. Phys. 2000, 201(17), 2493-2504.  doi: 10.1002/(ISSN)1521-3935

    14. [14]

      Balsamo, V.; Gouveia, L. M. Interplay of fractionated crystallization and morphology in polypropylene/poly(ε-caprolactone) blends. J. Polym. Sci., Part B: Polym. Phys. 2007, 45(11), 1365-1379.  doi: 10.1002/(ISSN)1099-0488

    15. [15]

      Morales, R. A.; Arnal, M. L.; Müller, A. J. The evaluation of the state of dispersion in immiscible blends where the minor phase exhibits fractionated crystallization. Polym. Bull. 1995, 35(3), 379-386.  doi: 10.1007/BF00963138

    16. [16]

      Bernal-Lara, T. E.; Liu, R. Y. F.; Hiltner, A.; Baer, E. Structure and thermal stability of polyethylene nanolayers. Polymer 2005, 46(9), 3043-3055.  doi: 10.1016/j.polymer.2005.01.055

    17. [17]

      Everaert, V.; Groeninckx, G.; Koch, M. H. J.; Reynaers, H. Influence of fractionated crystallization on the semicrystalline structure of (POM/(PS/PPE)) blends. Static and time-resolved SAXS, WAXD and DSC studies. Polymer 2003, 44(12), 3491-3508.

    18. [18]

      Bose, S.; Bhattacharyya, A. R.; Kodgire, P. V.; Misra, A. Fractionated crystallization in PA6/ABS blends: influence of a reactive compatibilizer and multiwall carbon nanotubes. Polymer 2007, 48(1), 356-362.  doi: 10.1016/j.polymer.2006.11.019

    19. [19]

      Cormia, R. L.; Price, F. P.; Turnbull, D. Kinetics of crystal nucleation in polyethylene. J. Chem. Phys. 1962, 37(6), 1333-1340.  doi: 10.1063/1.1733282

    20. [20]

      Shieh, Y. T.; Lee, M. S.; Chen, S. A. Crystallization behavior, crystal transformation, and morphology of polypropylene/polybutene-1 blends. Polymer 2001, 42(9), 4439-4448.  doi: 10.1016/S0032-3861(00)00567-X

    21. [21]

      Kalay, G.; Kalay, C. R. Compounding and injection molding of polybutene-1/polypropylene blends. J. Appl. Polym. Sci. 2003, 88(3), 806-813.  doi: 10.1002/(ISSN)1097-4628

    22. [22]

      Chen, W.; Li, X.; Li, L. B. Deformation-induced crystal-crystal transition of polybutene-1: an in situ FTIR imaging study. J. Mater. Sci. 2013, 48(14), 4925-4933.  doi: 10.1007/s10853-013-7273-1

    23. [23]

      Shao, H. F.; Ma, Y. P.; Nie, H. R. Solvent vapor annealing induced polymorphic transformation of polybutene-1. Chinese J. Polym. Sci. 2016, 34(9), 1141-1149.  doi: 10.1007/s10118-016-1823-3

    24. [24]

      Zeng, W. Preparation and properties of PB-1/PP blends. Polym. Plast. Technol. 2012, 51(7), 744-749.  doi: 10.1080/03602559.2012.663038

    25. [25]

      Arnal, M. L.; Matos, M. E.; Morales, R. A. Evaluation of the fractionated crystallization of dispersed polyolefins in a polystyrene matrix. Macromol. Chem. Phys. 1998, 199(10), 2275-2288.  doi: 10.1002/(ISSN)1521-3935

    26. [26]

      Shibata, M.; Teramoto, N.; Inoue, Y. Mechanical properties, morphologies, and crystallization behavior of plasticized poly(l-lactide)/poly(butylene succinate-co-l-lactate) blends. Polymer 2007, 48(9), 2768-2777.  doi: 10.1016/j.polymer.2007.02.065

    27. [27]

      Ding, M. M.; Fu, X. T.; Cao, J.; Fu, Q. Fractionated crystallization of HDPE in PS/POE/HDPE/SBS blends. Chinese J. Polym. Sci. 2008, 26(6), 733-740.  doi: 10.1142/S0256767908003485

  • 加载中
    1. [1]

      Zhongjie LiXiangyue KongYuhao LiuHuayu QiuLingling ZhanShouchun Yin . Progress of additives for morphology control in organic photovoltaics. Chinese Chemical Letters, 2024, 35(6): 109378-. doi: 10.1016/j.cclet.2023.109378

    2. [2]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    3. [3]

      Xin LuHaoran SunXiaomeng LiChunrui LiJinfeng WangDandan Zhou . C14-HSL limits the mycelial morphology of pathogen Trichosporon cells but enhances their aggregation: Mechanisms and implications. Chinese Chemical Letters, 2024, 35(6): 108936-. doi: 10.1016/j.cclet.2023.108936

    4. [4]

      Xingqun PuRongrong LiuYuting XieChenjing YangJingyi ChenBaoling GuoChun-Xia ZhaoPeng ZhaoJian RuanFangfu YeDavid A WeitzDong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820

    5. [5]

      Jun LuJinrui YanYaohao GuoJunjie QiuShuangliang ZhaoBo Bao . Controlling solid form and crystal habit of triphenylmethanol by antisolvent crystallization in a microfluidic device. Chinese Chemical Letters, 2024, 35(4): 108876-. doi: 10.1016/j.cclet.2023.108876

    6. [6]

      Shan JiangLingchen MengWenyue MaQingkai QiWei ZhangBin XuLeijing LiuWenjing Tian . Corrigendum to 'Morphology controllable conjugated network polymers based on AIE-active building block for TNP detection' [Chin. Chem. Lett. 32 (2021) 1037-1040]. Chinese Chemical Letters, 2024, 35(12): 108998-. doi: 10.1016/j.cclet.2023.108998

    7. [7]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

    8. [8]

      Hui-Juan WangWen-Wen XingZhen-Hai YuYong-Xue LiHeng-Yi ZhangQilin YuHongjie ZhuYao-Yao WangYu Liu . Cucurbit[7]uril confined phenothiazine bridged bis(bromophenyl pyridine) activated NIR luminescence for lysosome imaging. Chinese Chemical Letters, 2024, 35(6): 109183-. doi: 10.1016/j.cclet.2023.109183

    9. [9]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    10. [10]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    11. [11]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    12. [12]

      Zhong-Hui SunYu-Qi ZhangZhen-Yi GuDong-Yang QuHong-Yu GuanXing-Long Wu . CoPSe nanoparticles confined in nitrogen-doped dual carbon network towards high-performance lithium/potassium ion batteries. Chinese Chemical Letters, 2025, 36(1): 109590-. doi: 10.1016/j.cclet.2024.109590

    13. [13]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    14. [14]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    15. [15]

      Yi ZhouWei ZhangRong FuJiaxin DongYuxuan LiuZihang SongHan HanKang Cai . Self-assembly of two pairs of homochiral M2L4 coordination capsules with varied confined space using Tröger's base ligands. Chinese Chemical Letters, 2025, 36(2): 109865-. doi: 10.1016/j.cclet.2024.109865

Metrics
  • PDF Downloads(0)
  • Abstract views(738)
  • HTML views(17)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return