Citation: Yi-Xin Liu, Hong-Dong Zhang. Structures and Surface States of Polymer Brushes in Good Solvents: Effects of Surface Interactions[J]. Chinese Journal of Polymer Science, ;2018, 36(9): 1047-1054. doi: 10.1007/s10118-018-2100-4 shu

Structures and Surface States of Polymer Brushes in Good Solvents: Effects of Surface Interactions

  • Corresponding author: Yi-Xin Liu, lyx@fudan.edu.cn
  • Received Date: 23 November 2017
    Accepted Date: 3 December 2017
    Available Online: 28 February 2018

  • The influence of the surface interaction on the mesoscopic structure of grafted polymers in good solvents has been examined. At high surface coverage, tethered polymers are in the brush state and the parabolic segment density profile is confirmed by self-consistent field theory (SCFT) calculations. It is found that this is a universal behavior for a whole range of surface interactions from complete repulsion to strong attraction. More interestingly, finite surface repulsion may lead to the maximum in the proximal layer of its segment density profile, which is significantly different from both the depletion layer of pure repulsion and the adsorbing layer of attraction. In addition to the brush state on both repulsive and attractive surfaces, three additional surface states were identified by analyzing the scaling behavior of the layer thickness of polymer brushes: the mushroom state on repulsive substrates, the dilute and the semidilute surface states on attractive substrates.
  • 加载中
    1. [1]

      Chen, W. L.; Cordero, R.; Tran, H.; Ober, C. K. 50th Anniversary perspective: polymer brushes: novel surfaces for future materials. Macromolecules 2017, 50(11), 4089−4113  doi: 10.1021/acs.macromol.7b00450

    2. [2]

      Binder, K.; Milchev, A. Polymer brushes on flat and curved surfaces: how computer simulations can help to test theories and to interpret experiments. J. Polym. Sci., Part B: Polym. Phys. 2012, 50(22), 1515−1555  doi: 10.1002/polb.v50.22

    3. [3]

      Azzaroni, O. Polymer brushes here, there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields. J. Polym. Sci., Part A: Polym. Chem. 2012, 50(16), 3225−3258  doi: 10.1002/pola.v50.16

    4. [4]

      Cohen Stuart, M. A.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F.; Zauscher, S.; Luzinov, I.; Minko, S. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9(2), 101−113  doi: 10.1038/nmat2614

    5. [5]

      Ayres, N. Polymer brushes: applications in biomaterials and nanotechnology. Polym. Chem. 2010, 1(6), 769−777  doi: 10.1039/B9PY00246D

    6. [6]

      Brittain, W. J.; Minko, S. A structural definition of polymer brushes. J. Polym. Sci., Part A: Polym. Chem. 2007, 45(16), 3505−3512  doi: 10.1002/(ISSN)1099-0518

    7. [7]

      Currie, E. P. K.; Norde, W.; Cohen Stuart, M. A. Tethered polymer chains: surface chemistry and their impact on colloidal and surface properties. Adv. Colloid Interface Sci. 2003, 100-102, 205–265.

    8. [8]

      Granick, S. Macromolecules at surfaces? research challenges and opportunities from tribology to biology J. Polym. Sci., Part B: Polym. Phys. 2003, 41(22), 2755−2793  doi: 10.1002/(ISSN)1099-0488

    9. [9]

      Halperin, A.; Tirrell, M.; Lodge, T. Tethered chains in polymer microstructures. Adv. Polym. Sci. 1992, 100, 31−71

    10. [10]

      Alexander, S. Adsorption of chain molecules with a polar head a scaling description. J. Phys. 1977, 38(8), 983−987  doi: 10.1051/jphys:01977003808098300

    11. [11]

      de Gennes, P. G. Conformations of polymers attached to an interface. Macromolecules 1980, 1075(19), 1069−1075

    12. [12]

      Milner, S. T.; Witten, T.; Cates, M. Theory of the grafted polymer brush. Macromolecules 1988, 21(10), 2610−2619

    13. [13]

      Milner, S. T. Polymer brushes. Science 1991, 251, 905−914  doi: 10.1126/science.251.4996.905

    14. [14]

      Netz, R. R.; Schick, M. Polymer brushes: from self-consistent field theory to classical theory. Macromolecules 1998, 31(15), 5105−5122  doi: 10.1021/ma9717505

    15. [15]

      Wijmans, C. M.; Scheutjens, J. M. H. M.; Zhulina, E. B. Self-consistent field theories for polymer brushes: lattice calculations and an asymptotic analytical description. Macromolecules 1992, 25(10), 2657−2665  doi: 10.1021/ma00036a016

    16. [16]

      Matsen, M. W.; Griffiths, G. H. Melt brushes of diblock copolymer. Eur. Phys. J. E 2009, 29(2), 219−227  doi: 10.1140/epje/i2009-10470-2

    17. [17]

      de Gennes, P. G., "Scaling concepts in polymer physics", Cornell University Press, Ithaca, 1979.

    18. [18]

      Eisenriegler, E.; Kremer, K.; Binder, K. Adsorption of polymer chains at surfaces: scaling and Monte Carlo analyses. J. Chem. Phys. 1982, 77(12), 6296−6320  doi: 10.1063/1.443835

    19. [19]

      Eisenriegler, E. Dilute and semidilute polymer solutions near an adsorbing wall. J. Chem. Phys. 1983, 79(2), 1052−1064  doi: 10.1063/1.445847

    20. [20]

      Bouchaud, E.; Daoud, M. Polymer adsorption: concentration effects. J. Phys. 1987, 48(11), 1991−2000  doi: 10.1051/jphys:0198700480110199100

    21. [21]

      Descas, R.; Sommer, J. U.; Blumen, A. Grafted polymer chains interacting with substrates: computer simulations and scaling. macromol. Theory Simul. 2008, 17(9), 429−453  doi: 10.1002/mats.v17:9

    22. [22]

      Adamuti-Trache, M.; McMullen, W. E.; Douglas, J. F. Segmental concentration profiles of end-tethered polymers with excluded-volume and surface interactions. J. Chem. Phys. 1996, 105(11), 4798−4811  doi: 10.1063/1.472991

    23. [23]

      Marko, J. F.; Johner, A.; Marques, C. M. Grafted polymers under the influence of external fields. J. Chem. Phys. 1993, 99(10), 8142−8153  doi: 10.1063/1.465641

    24. [24]

      Bijsterbosch, H. D.; de Haan, V. O.; de Graaf, A. W.; Mellema, M.; Leermakers, F. A. M.; Cohen Stuart, M. A.; van Well, A. A. Tethered adsorbing chains: neutron reflectivity and surface pressure of spread diblock copolymer monolayers. Langmuir 1995, 29(14), 4467−4473

    25. [25]

      Fredrickson, G.H., "The equilibrium theory of inhomogeneous polymers", Clarendon Press, Oxford, 2006.

    26. [26]

      Chantawansri, T. L.; Hur, S. M.; García-Cervera, C. J.; Ceniceros, H. D.; Fredrickson, G. H. Spectral collocation methods for polymer brushes. J. Chem. Phys. 2011, 134(24), 244905  doi: 10.1063/1.3604814

    27. [27]

      Liu, Y. X.; Zhang, H. D. Exponential time differencing methods with Chebyshev collocation for polymers confined by interacting surfaces. J. Chem. Phys. 2014, 140(22), 224101  doi: 10.1063/1.4881516

    28. [28]

      Rasmussen, K. Ø.; Kalosakas, G. Improved numerical algorithm for exploring block copolymer mesophases. J. Polym. Sci., Part B: Polym. Phys. 2002, 40(16), 1777−1783  doi: 10.1002/(ISSN)1099-0488

    29. [29]

      Tzeremes, G.; Rasmussen, K. Ø.; Lookman, T.; Saxena, A. Efficient computation of the structural phase behavior of block copolymers. Phys. Rev. E. 2002, 65(4), 041806.

    30. [30]

      Müller, M. Phase diagram of a mixed polymer brush. Phys. Rev. E 2002, 65(3), 30802.

    31. [31]

      Suo, T.; Whitmore, M. D. Self-consistent field theory of tethered polymers: One dimensional, three dimensional, strong stretching theories and the effects of excluded-volume-only interactions. J. Chem. Phys. 2014, 141(20), 204903.

    32. [32]

      Meng, D.; Wang, Q. Solvent response of diblock copolymer brushes. J. Chem. Phys. 2009, 130(13), 134904.

    33. [33]

      Trefethen, L. N., "Spectral methods in MATLAB", SIAM, Philadelphia, 2000.

    34. [34]

      Douglas, J. F.; Nemirovsky, A. M.; Freed, K. F. Polymer-polymer and polymer-surface excluded volume effects in flexible polymers attached to an interface: comparison of renormalization group calculations with Monte Carlo and direct enumeration data. Macromolecules 1986, 19(7), 2041−2054  doi: 10.1021/ma00161a043

    35. [35]

      Wu, D. T.; Fredrickson, G. H.; Carton, J. P. Surface segregation in conformationally asymmetric polymer blends: Incompressibility and boundary conditions. J. Chem. Phys. 1996, 104(16), 6387−6397  doi: 10.1063/1.471272

    36. [36]

      Hur, S. M.; Garcॆa-Cervera, C. J.; Fredrickson, G. H. Chebyshev collocation in polymer field theory: application to wetting phenomena. Macromolecules 2012, 45(6), 2905−2919  doi: 10.1021/ma202427n

    37. [37]

      Laradji, M.; Guo, H.; Zuckermann, M. Off-lattice Monte Carlo simulation of polymer brushes in good solvents. Phys. Rev. E 1994, 49(4), 3199−3206  doi: 10.1103/PhysRevE.49.3199

    38. [38]

      de Gennes, P. G.; Pincus, P. Scaling theory of polymer adsorption: proximal exponent. J. Phys. Lett. 1983, 44(7), 241−246  doi: 10.1051/jphyslet:01983004407024100

    39. [39]

      Chakrabarti, A.; Nelson, P.; Toral, R. Structure of polymer chains end-grafted on an interacting surface. Phys. Rev. A 1992, 46(8), 4930−4934  doi: 10.1103/PhysRevA.46.4930

    40. [40]

      Grest, G. S. Grafted polymer brushes: a constant surface pressure molecular dynamics simulation. Macromolecules 1994, 27(2), 418−426  doi: 10.1021/ma00080a015

    41. [41]

      Flatt, R. J.; Schober, I.; Raphael, E.; Plassard, C.; Lesniewska, E. Conformation of adsorbed comb copolymer dispersants. Langmuir 2009, 25(2), 845−855  doi: 10.1021/la801410e

  • 加载中
    1. [1]

      Zihao WangJing XueZhicui SongJianxiong XingAijun ZhouJianmin MaJingze Li . Li-Zn alloy patch for defect-free polymer interface film enables excellent protection effect towards stable Li metal anode. Chinese Chemical Letters, 2024, 35(10): 109489-. doi: 10.1016/j.cclet.2024.109489

    2. [2]

      Panke ZhouHong YuMun Yin CheeTao ZengTianli JinHongling YuShuo WuWen Siang LewXiong Chen . Electron push-pull effects induced performance promotion in covalent organic polymer thin films-based memristor for neuromorphic application. Chinese Chemical Letters, 2024, 35(5): 109279-. doi: 10.1016/j.cclet.2023.109279

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Tiankai SunHui MinZongsu HanLiang WangPeng ChengWei Shi . Rapid detection of nanoplastic particles by a luminescent Tb-based coordination polymer. Chinese Chemical Letters, 2024, 35(5): 108718-. doi: 10.1016/j.cclet.2023.108718

    5. [5]

      Mengjun SunZhi WangJvhui JiangXiaobing WangChuang Yu . Gelation mechanisms of gel polymer electrolytes for zinc-based batteries. Chinese Chemical Letters, 2024, 35(5): 109393-. doi: 10.1016/j.cclet.2023.109393

    6. [6]

      Huimin Gao Zhuochen Yu Xuze Zhang Xiangkun Yu Jiyuan Xing Youliang Zhu Hu-Jun Qian Zhong-Yuan Lu . A mini review of the recent progress in coarse-grained simulation of polymer systems. Chinese Journal of Structural Chemistry, 2024, 43(5): 100266-100266. doi: 10.1016/j.cjsc.2024.100266

    7. [7]

      Dong LvXuelei LiuWei LiQiang ZhangXinhong YuYanchun Han . Single droplet formation by controlling the viscoelasticity of polymer solutions during inkjet printing. Chinese Chemical Letters, 2024, 35(6): 109401-. doi: 10.1016/j.cclet.2023.109401

    8. [8]

      Jinjie LuQikai LiuYuting ZhangYi ZhouYanbo Zhou . Antibacterial performance of cationic quaternary phosphonium-modified chitosan polymer in water. Chinese Chemical Letters, 2024, 35(9): 109406-. doi: 10.1016/j.cclet.2023.109406

    9. [9]

      Kexin YuanYulei LiuHaoran FengYi LiuJun ChengBeiyang LuoQinglian WuXinyu ZhangYing WangXian BaoWanqian GuoJun Ma . Unlocking the potential of thin-film composite reverse osmosis membrane performance: Insights from mass transfer modeling. Chinese Chemical Letters, 2024, 35(5): 109022-. doi: 10.1016/j.cclet.2023.109022

    10. [10]

      Ting WANGPeipei ZHANGShuqin LIURuihong WANGJianjun ZHANG . A Bi-CP-based solid-state thin-film sensor: Preparation and luminescence sensing for bioamine vapors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1615-1621. doi: 10.11862/CJIC.20240134

    11. [11]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    12. [12]

      Yuanzhe Lu Yuanqin Zhu Linfeng Zhong Dingshan Yu . Long-lifespan aqueous alkaline and acidic batteries enabled by redox conjugated covalent organic polymer anodes. Chinese Journal of Structural Chemistry, 2024, 43(3): 100249-100249. doi: 10.1016/j.cjsc.2024.100249

    13. [13]

      Qianqian SongYunting ZhangJianli LiangSi LiuJian ZhuXingbin Yan . Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries. Chinese Chemical Letters, 2024, 35(6): 108797-. doi: 10.1016/j.cclet.2023.108797

    14. [14]

      Xin-Tong ZhaoJin-Zhi GuoWen-Liang LiJing-Ping ZhangXing-Long Wu . Two-dimensional conjugated coordination polymer monolayer as anode material for lithium-ion batteries: A DFT study. Chinese Chemical Letters, 2024, 35(6): 108715-. doi: 10.1016/j.cclet.2023.108715

    15. [15]

      Xin LiXuan DingJunkun ZhouHui ShiZhenxi DaiJiayi LiuYongcun MaPenghui ShaoLiming YangXubiao Luo . Utilizing synergistic effects of bifunctional polymer hydrogel PAM-PAMPS for selective capture of Pb(Ⅱ) from wastewater. Chinese Chemical Letters, 2024, 35(7): 109158-. doi: 10.1016/j.cclet.2023.109158

    16. [16]

      Lei ZhouYoujun ZhouLizhen FangYiqiao BaiYujia MengLiang LiJie YangYong Yao . Pillar[5]arene based artificial light-harvesting supramolecular polymer for efficient and recyclable photocatalytic applications. Chinese Chemical Letters, 2024, 35(9): 109509-. doi: 10.1016/j.cclet.2024.109509

    17. [17]

      Wenhao ChenMuxuan WuHan ChenLue MoYirong Zhu . Cu2Se@C thin film with three-dimensional braided structure as a cathode material for enhanced Cu2+ storage. Chinese Chemical Letters, 2024, 35(5): 108698-. doi: 10.1016/j.cclet.2023.108698

    18. [18]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    19. [19]

      Jun GuoZhenbang ZhuangWanqiang LiuGang Huang . "Co-coordination force" assisted rigid-flexible coupling crystalline polymer for high-performance aqueous zinc-organic batteries. Chinese Chemical Letters, 2024, 35(9): 109803-. doi: 10.1016/j.cclet.2024.109803

    20. [20]

      Hengying XiangNanping DengLu GaoWen YuBowen ChengWeimin Kang . 3D core-shell nanofibers framework and functional ceramic nanoparticles synergistically reinforced composite polymer electrolytes for high-performance all-solid-state lithium metal battery. Chinese Chemical Letters, 2024, 35(8): 109182-. doi: 10.1016/j.cclet.2023.109182

Metrics
  • PDF Downloads(0)
  • Abstract views(559)
  • HTML views(6)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return