Citation: Khalil Faghihi, Hassan Moghanian, Fatemeh Mozafari, Meisam Shabanian. Magnetic and Heat Resistant Poly(imide-ether) Nanocomposites Derived from Methyl Rich 9H-xanthene: Synthesis and Characterization[J]. Chinese Journal of Polymer Science, ;2018, 36(7): 822-834. doi: 10.1007/s10118-018-2094-y shu

Magnetic and Heat Resistant Poly(imide-ether) Nanocomposites Derived from Methyl Rich 9H-xanthene: Synthesis and Characterization

  • Corresponding author: Hassan Moghanian, moghanian@gmail.com
  • Received Date: 25 August 2017
    Accepted Date: 20 November 2017
    Available Online: 2 July 2018

  • In this study a new series of magnetic and heat resistant nanocomposites were prepared based on a highly soluble poly(imide-ether) (PIE) reinforced with two different types of magnetic nanoparticles via a solution intercalation technique. New PIE with good solubility and desired molar mass containing bulky xanthene rings and amide groups in the side chains was synthesized via thermal cyclization of the poly(amic acid) precursor, obtained from the reaction of a new diamine derived from 9H-xanthene and 4,4′-oxydiphthalic dianhydride (ODPA). Improved solubility was attributed to the presence of xanthene group and flexible ether linkage in the polyimide backbones that reduce the chain-chain interaction and enhance solubility by penetrating solvent molecules into the polyimide chains. Fe3O4 nanoparticles (MNPs) which synthesized from chemical co-precipitation route were coated with silica (SiO2), sequentially with (3-aminopropyl)triethoxysilane and poly-melamine-terephthaldehyde (MNPs-PMT), and then separately dispersed in the poly(amic acid) solutions and thermally imidized to form PIE/Fe3O4 and PIE/MNPs-PMT nanocomposites. The nanostructures and properties of the resultant materials were investigated using FTIR spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), vibrating sample magnetometer (VSM), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The properties of the nanocomposites were strongly related to the dispersion and interaction between the nanoparticles and PIE matrix. The thermogravimetric analysis (TGA) results showed that the addition of MNPs-PMT nanoparticles resulted in a substantial increase in the thermal stability of the corresponding PIEN. The temperature at 10% weight loss (T10) was increased from 416 °C to 428 °C for PIEN containing 3 wt% MNPs-PMT as compared to neat PIE, as well the char yield enhanced. Furthermore, the MNPs-PMT nanoparticles had better dispersion in the polymer matrix due to the strong intermolecular hydrogen bond interactions between the NH and C=N groups of surface-modified nanoparticles and the PIE matrix than the uncoated Fe3O4 nanoparticles, and exhibited a better intercalated morphology and improved thermal properties. Also, the PIEN nanocomposites under applied magnetic field exhibited the hysteretic loops of the superparamagnetic nature.
  • 加载中
    1. [1]

      Zou, H.; Wu, S.; Shen, J., Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem. Rev. 2008, 108(9), 3893-3957.  doi: 10.1021/cr068035q

    2. [2]

      Wen, J.; Wilkes, G. L., Organic/inorganic hybrid network materials by the sol-gel approach. Chem. Mater. 1996, 8(8), 1667-1681.  doi: 10.1021/cm9601143

    3. [3]

      Katiyar, V.; Gerds, N.; Koch, C. B.; Risbo, J.; Hansen, H. C. B.; Plackett, D., Poly l-lactide-layered double hydroxide nanocomposites via in situ polymerization of l-lactide. Polym. Degrad. Stab. 2010, 95(12), 2563-2573.  doi: 10.1016/j.polymdegradstab.2010.07.031

    4. [4]

      Zhang, D.; Karki, A. B.; Rutman, D.; Young, D. P.; Wang, A.; Cocke, D.; Ho, T. H.; Guo, Z., Electrospun polyacrylonitrile nanocomposite fibers reinforced with Fe3O4 nanoparticles: fabrication and property analysis. Polymer 2009, 50(17), 4189-4198.  doi: 10.1016/j.polymer.2009.06.062

    5. [5]

      Ramanathan, T.; Liu, H.; Brinson, L., Functionalized SWNT/polymer nanocomposites for dramatic property improvement. J. Polym. Sci. Pol. Phys. 2005, 43(17), 2269-2279.  doi: 10.1002/(ISSN)1099-0488

    6. [6]

      Shabanian, M.; Ardeshir, H.; Haji-Ali, S.; Moghanian, H.; Hajibeygi, M.; Faghihi, K.; Khonakdar, H. A.; Salimi, H., Efficient poly(methyl-ether-imide)/LDH nanocomposite derived from a methyl rich bisphenol: From synthesis to properties. Appl. Clay Sci. 2016, 123, 285-291.  doi: 10.1016/j.clay.2016.01.001

    7. [7]

      Malmir, S.; Montero, B.; Rico, M.; Barral, L.; Bouza, R., Morphology, thermal and barrier properties of biodegradable films of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) containing cellulose nanocrystals. Compos. Part A-Appl. S. 2017, 93, 41-48.  doi: 10.1016/j.compositesa.2016.11.011

    8. [8]

      Mao, L.; Liu, Y.; Wu, H.; Chen, J.; Yao, J., Poly(ε-caprolactone) filled with polydopamine-coated high aspect ratio layered double hydroxide: Simultaneous enhancement of mechanical and barrier properties. Appl. Clay Sci. 2017, 150, 202-209.  doi: 10.1016/j.clay.2017.09.031

    9. [9]

      Lou, L.; Yu, K.; Zhang, Z.; Huang, R.; Wang, Y.; Zhu, Z., Facile methods for synthesis of core-shell structured and heterostructured Fe3O4@Au nanocomposites. Appl. Surf. Sci. 2012, 258(22), 8521-8526.  doi: 10.1016/j.apsusc.2012.05.031

    10. [10]

      Zheng, H.; Yang, Y.; Wen, F.-S.; Yi, H.-B.; Zhou, D.; Li, F.-S., Microwave magnetic permeability of Fe3O4 nanoparticles. Chinese Phys. Lett. 2009, 26(1), 017501.  doi: 10.1088/0256-307X/26/1/017501

    11. [11]

      Petri-Fink, A.; Chastellain, M.; Juillerat-Jeanneret, L.; Ferrari, A.; Hofmann, H., Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. Biomaterials 2005, 26(15), 2685-2694.  doi: 10.1016/j.biomaterials.2004.07.023

    12. [12]

      Tan, S. T.; Wendorff, J. H.; Pietzonka, C.; Jia, Z. H.; Wang, G. Q., Biocompatible and biodegradable polymer nanofibers displaying superparamagnetic properties. ChemPhysChem 2005, 6(8), 1461-1465.  doi: 10.1002/(ISSN)1439-7641

    13. [13]

      Hong, R.; Zhang, S.; Han, Y.; Li, H.; Ding, J.; Zheng, Y., Preparation, characterization and application of bilayer surfactant-stabilized ferrofluids. Powder Technol. 2006, 170(1), 1-11.  doi: 10.1016/j.powtec.2006.08.017

    14. [14]

      Vidal-Vidal, J.; Rivas, J.; López-Quintela, M., Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloid Surface A 2006, 288(1), 44-51.

    15. [15]

      Zhao, D. L.; Teng, P.; Xu, Y.; Xia, Q. S.; Tang, J. T., Magnetic and inductive heating properties of Fe3O4/polyethylene glycol composite nanoparticles with core-shell structure. J. Alloy. Compd. 2010, 502(2), 392-395.  doi: 10.1016/j.jallcom.2010.04.177

    16. [16]

      Utech, S.; Scherer, C.; Krohne, K.; Carrella, L.; Rentschler, E.; Gasi, T.; Ksenofontov, V.; Felser, C.; Maskos, M., Magnetic polyorganosiloxane core-shell nanoparticles: Synthesis, characterization and magnetic fractionation. J. Magn. Magn. Mater. 2010, 322(21), 3519-3526.  doi: 10.1016/j.jmmm.2010.06.056

    17. [17]

      Lu, Y.; Yin, Y.; Mayers, B. T.; Xia, Y., Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett. 2002, 2(3), 183-186.  doi: 10.1021/nl015681q

    18. [18]

      Tena, A.; Fernández, L.; Sánchez, M.; Palacio, L.; Lozano, A.; Hernández, A.; Prádanos, P., Mixed matrix membranes of 6FDA-6FpDA with surface functionalized γ-alumina particles. an analysis of the improvement of permselectivity for several gas pairs. Chem. Eng. Sci. 2010, 65(6), 2227-2235.  doi: 10.1016/j.ces.2009.12.023

    19. [19]

      Koohmareh, G. A., Synthesis and characterization of new disperse-red functionalized polyimide for use as nonlinear optical material. Des. Monomers Polym. 2012, 15(3), 275-288.  doi: 10.1163/156855511X615678

    20. [20]

      Imai, Y.; Itoya, K.; Kanamaru, M.; Kakimoto, M. A., Synthesis and properties of new hydroxyl-pendant aromatic polyimides derived from trimethylsilylated 4, 4′-diamino-3, 3′-dihydroxybiphenyl and aromatic tetracarboxylic dianhydrides. J. Polym. Sci. Pol. Chem. 2002, 40(11), 1790-1795.  doi: 10.1002/(ISSN)1099-0518

    21. [21]

      Yang, H. H., "Aromatic high-strength fibers", John Wiley & Sons, New York, 1989.

    22. [22]

      Faghihi, K.; Moghanian, H., Synthesis and characterization of new optically active poly(amide-imide) s containing 1, 3, 4-oxadiazole moiety in the main chain. Polym. Bull. 2010, 65(4), 319-332.  doi: 10.1007/s00289-009-0203-3

    23. [23]

      Abadie, M. J.; Sillion, B., "Polyimides and other high-temperature polymers", Elsevier Science Ltd, Montpellier, France, 1991.

    24. [24]

      Akhter, T.; Saeed, S.; Siddiqi, H. M.; Ok Park, O., Preparation and characterization of novel polyimide-silica hybrids. Polym. Adv. Technol. 2013, 24(4), 407-414.  doi: 10.1002/pat.v24.4

    25. [25]

      Kong, J. Y.; Choi, M. C.; Kim, G. Y.; Park, J. J.; Selvaraj, M.; Han, M.; Ha, C.-S., Preparation and properties of polyimide/graphene oxide nanocomposite films with Mg ion crosslinker. Eur. Polym. J. 2012, 48(8), 1394-1405.  doi: 10.1016/j.eurpolymj.2012.05.015

    26. [26]

      Thiruvasagam, P., Synthesis and characterization of AB-type monomers and polyimides: a review. Des. Monomers Polym. 2013, 16(3), 197-221.  doi: 10.1080/15685551.2013.771307

    27. [27]

      García, J. M.; García, F. C.; Serna, F.; José, L., High-performance aromatic polyamides. Prog. Polym. Sci. 2010, 35(5), 623-686.  doi: 10.1016/j.progpolymsci.2009.09.002

    28. [28]

      Marchildon, K., Polyamides-still strong after seventy years. Macromol. React. Eng. 2011, 5(1), 22-54.  doi: 10.1002/mren.v5.1

    29. [29]

      Mallakpour, S.; Kowsari, E., Synthesis and characterization of new optically active poly(amide-imide)s containing epiclon and L-methionine moieties in the main chain. Polym. Advan. Technol. 2005, 16(10), 732-737.  doi: 10.1002/(ISSN)1099-1581

    30. [30]

      Zulfiqar, S.; Sarwar, M. I., Soluble aromatic polyamide bearing sulfone linkages: synthesis and characterization. High Perform. Polym. 2009, 21(1), 3-15.  doi: 10.1177/0954008308089114

    31. [31]

      Liaw, D. J.; Liaw, B. Y., Synthesis and characterization of new polyamide-imides containing pendent adamantyl groups. Polymer 2001, 42(2), 839-845.  doi: 10.1016/S0032-3861(00)00379-7

    32. [32]

      Liaw, D. J.; Hsu, P. N.; Liaw, B. Y., Synthesis and characterization of novel polyamide-imides containing noncoplanar 2, 2′-dimethyl-4, 4′-biphenylene unit. J. Polym. Sci. Pol. Chem. 2001, 39(1), 63-70.  doi: 10.1002/(ISSN)1099-0518

    33. [33]

      Hsiao, S. H.; Yang, C. P.; Chen, C. W.; Liou, G. S., Synthesis and properties of novel poly(amide-imide) s containing pendent diphenylamino groups. Eur. Polym. J. 2005, 41(3), 511-517.  doi: 10.1016/j.eurpolymj.2004.10.011

    34. [34]

      Sadavarte, N. V.; Avadhani, C.; Wadgaonkar, P. P., Synthesis and characterization of new organosoluble aromatic polyamides and polyazomethines containing pendent pentadecyl chains. High Perform. Polym. 2011, 23(7), 494-505.  doi: 10.1177/0954008311417316

    35. [35]

      Espeso, J. F.; Lozano, Á. E.; de La Campa, J. G.; García-Yoldi, Í.; de Abajo, J., Synthesis and properties of new aromatic polyisophthalamides with adamantylamide pendent groups. J. Polym. Sci., A: Polym. Chem. 2010, 48(8), 1743-1751.  doi: 10.1002/pola.v48:8

    36. [36]

      Tena, A.; Shishatskiy, S.; Meis, D.; Wind, J.; Filiz, V.; Abetz, V., Influence of the Composition and Imidization Route on the Chain Packing and Gas Separation Properties of Fluorinated Copolyimides. Macromolecules 2017, 50(15), 5839-5849.  doi: 10.1021/acs.macromol.7b01051

    37. [37]

      Mehdipour-Ataei, S., Soluble, thermally stable poly(ester amide) s derived from terephthalic acid bis(carboxydiphenyl methyl) ester and different diamines. Eur. Polym. J. 2005, 41(1), 65-71.  doi: 10.1016/j.eurpolymj.2004.08.013

    38. [38]

      Hsiao, S. H.; Lin, K. H., Polyimides derived from novel asymmetric ether diamine. J. Polym. Sci. Pol. Chem. 2005, 43(2), 331-341.  doi: 10.1002/(ISSN)1099-0518

    39. [39]

      Faghihi, K.; Moghanian, H., Synthesis and characterization of optically active poly(amide-imide) s containing photosensitive chalcone units in the main chain. Chinese J. Polym. Sci. 2010, 28(5), 695-704.  doi: 10.1007/s10118-010-9119-5

    40. [40]

      Shabanian, M.; Varvanifarahani, M.; Hajibeygi, M.; Khonakdar, H. A.; Ebrahimi, S.; Jafari, S. H., Effect of clay modifier on morphology, thermal properties and flammability of newly synthesized poly(sulfide-sulfone-amide). Appl. Clay Sci. 2015, 108, 70-77.  doi: 10.1016/j.clay.2015.02.020

    41. [41]

      Khazaka, R.; Locatelli, M.; Diaham, S.; Bidan, P., Effects of mechanical stresses, thickness and atmosphere on aging of polyimide thin films at high temperature. Polym. Degrad. Stabil. 2013, 98(1), 361-367.  doi: 10.1016/j.polymdegradstab.2012.09.005

    42. [42]

      Wang, C.; Chen, W.; Chen, Y.; Zhao, X.; Li, J.; Ren, Q., New fluorinated poly(ether sulfone imide) s with high thermal stability and low dielectric constant. Mater. Chem. Phys. 2014, 143(2), 773-778.  doi: 10.1016/j.matchemphys.2013.10.012

    43. [43]

      Hsiao, S. H.; Yang, C. P.; Lin, W. L., Synthesis and characterization of new diphenylfluorene-based aromatic polyamides derived from 9, 9-bis[4-(4-carboxy-phenoxy) phenyl] fluorene. Macromol. Chem. Phys. 1999, 200(6), 1428-1433.  doi: 10.1002/(ISSN)1521-3935

    44. [44]

      Yang, C. P.; Lin, J. H., Preparation and properties of aromatic polyamides and polyimides derived from 3, 3-bis[4-(4-aminophenoxy) phenyl] phthalide. J. Polym. Sci. Pol. Chem. 1994, 32(3), 423-433.  doi: 10.1002/pola.1994.080320303

    45. [45]

      Yang, C. P.; Lin, J. H., Syntheses and properties of aromatic polyamides and polyimides based on 3, 3-bis[4-(4-aminophenoxy) phenyl]-phthalimidine. Polymer 1995, 36(13), 2607-2614.  doi: 10.1016/0032-3861(95)91208-O

    46. [46]

      Liaw, D. J.; Liaw, B. Y.; Chung, C. Y., Synthesis and characterization of new adamantane-type cardo polyamides. Acta Polym. Sin. (in Chinese) 1999, 50(4), 135-140.

    47. [47]

      Liaw, D. J.; Liaw, B. Y., Synthesis and characterization of norbornane-containing cardo polyamides. J. Polym. Sci. Pol. Chem. 1999, 37(15), 2791-2794.  doi: 10.1002/(ISSN)1099-0518

    48. [48]

      Hatakeyama, S.; Ochi, N.; Numata, H.; Takano, S., A new route to substituted 3-methoxycarbonyldihydropyrans; enantioselective synthesis of (-)-methyl elenolate. J. Chem. Soc. Chem. Commun. 1988, (17), 1202-1204.  doi: 10.1039/C39880001202

    49. [49]

      Banerjee, A.; Mukherjee, A., Chemical aspects of santalin as a histological stain. Stain Technol. 1981, 56(2), 83-85.  doi: 10.3109/10520298109067286

    50. [50]

      Hunter, R. C.; Beveridge, T. J., Application of a pH-sensitive fluoroprobe (C-SNARF-4) for pH microenvironment analysis in Pseudomonas aeruginosa biofilms. Appl. Environ. Microb. 2005, 71(5), 2501-2510.  doi: 10.1128/AEM.71.5.2501-2510.2005

    51. [51]

      Ahmad, M.; King, T. A.; Ko, D.-K.; Cha, B. H.; Lee, J., Performance and photostability of xanthene and pyrromethene laser dyes in sol-gel phases. J. Phys. D Appl. Phys. 2002, 35(13), 1473-1476.  doi: 10.1088/0022-3727/35/13/303

    52. [52]

      Katritzky, A. R.; Czerney, P.; Levell, J. R., Benzotriazole-mediated conversions of para-H-substituted pyrylium, benzo [b] pyrylium, and xanthylium salts into para-position functionalized derivatives (an indirect electrophilic substitution of electron-deficient heteroaromatics). J. Org. Chem. 1997, 62(23), 8198-8200.  doi: 10.1021/jo971174a

    53. [53]

      Li, T.; Sheng, S. R.; Wei, M. H.; Chen, C.; Song, C. S., A new fluorinated poly(ether amide) bearing xanthene group. Chinese Chem. Lett. 2010, 21(10), 1247-1250.  doi: 10.1016/j.cclet.2010.04.017

    54. [54]

      Hajibeygi, M.; Shabanian, M.; Moghanian, H.; Khonakdar, H.; Häußler, L., Development of one-step synthesized LDH reinforced multifunctional poly(amide-imide) matrix containing xanthene rings: study on thermal stability and flame retardancy. RSC Adv. 2015, 5(66), 53726-53735.  doi: 10.1039/C5RA05565B

    55. [55]

      Morisaki, Y.; Murakami, T.; Sawamura, T.; Chujo, Y.,[2.2] Paracyclophane-layered polymers end-capped with fluorescence quenchers. Macromolecules 2009, 42(10), 3656-3660.  doi: 10.1021/ma9000644

    56. [56]

      Morisaki, Y.; Murakami, T.; Chujo, Y., Synthesis and properties of [2.2] paracyclophane-layered polymers. Macromolecules 2008, 41(16), 5960-5963.  doi: 10.1021/ma801358n

    57. [57]

      Stöber, W.; Fink, A.; Bohn, E., Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid. Interf. Sci. 1968, 26(1), 62-69.  doi: 10.1016/0021-9797(68)90272-5

    58. [58]

      Mobinikhaledi, A.; Moghanian, H.; Deinavizadeh, M., pTSA-catalyzed condensation of xylenols and aldehydes under solvent-free conditions: one-pot synthesis of 9H-xanthene or bisphenol derivatives. C. R. Chimie 2013, 16, 1035-1041.  doi: 10.1016/j.crci.2013.03.008

    59. [59]

      Schwab, M. G.; Fassbender, B.; Spiess, H. W.; Thomas, A.; Feng, X.; Mullen, K., Catalyst-free preparation of melamine-based microporous polymer networks through Schiff base chemistry. J. Am. Chem. Soc. 2009, 131(21), 7216-7217.  doi: 10.1021/ja902116f

    60. [60]

      Giri, J.; Thakurta, S. G.; Bellare, J.; Nigam, A. K.; Bahadur, D., Preparation and characterization of phospholipid stabilized uniform sized magnetite nanoparticles. J. Magn. Magn. Mater. 2005, 293(1), 62-68.  doi: 10.1016/j.jmmm.2005.01.044

    61. [61]

      Wan, M., The influence of polymerization method and temperature on the absorption spectra and morphology of polyaniline. Synthetic Met. 1989, 31(1), 51-59.  doi: 10.1016/0379-6779(89)90626-7

    62. [62]

      Moghanian, H.; Mobinikhaledi, A.; Baharangiz, Z., Synthesis, characterization and magnetic properties of novel heat resistant polyimide nanocomposites derived from 14H-dibenzo [a, j] xanthene. J. Polym. Res. 2014, 21, 513.  doi: 10.1007/s10965-014-0513-5

    63. [63]

      Yang, C.; Chen, C., Synthesis, characterisation and properties of polyanilines containing transition metal ions. Synthetic Met. 2005, 153(1-3), 133-136.  doi: 10.1016/j.synthmet.2005.07.136

    64. [64]

      Jiang, J.; Li, L.; Zhu, M., Polyaniline/magnetic ferrite nanocomposites obtained by in situ polymerization. React. Funct. Polym. 2008, 68(1), 57-62.  doi: 10.1016/j.reactfunctpolym.2007.10.010

    65. [65]

      Farghali, A.; Moussa, M.; Khedr, M., Synthesis and characterization of novel conductive and magnetic nano-composites. J. Alloy. Compd. 2010, 499(1), 98-103.  doi: 10.1016/j.jallcom.2010.03.124

    66. [66]

      Liu, D.; Wu, W.; Ling, J.; Wen, S.; Gu, N.; Zhang, X., Effective PEGylation of iron oxide nanoparticles for high performance cancer imaging. Adv. Funct. Mater. 2011, 21(8), 1498-1504.  doi: 10.1002/adfm.v21.8

    67. [67]

      Lu, A. H.; Salabas, E. e. L.; Schüth, F., Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew. Chem. Int. Ed. 2007, 46(8), 1222-1244.  doi: 10.1002/(ISSN)1521-3773

    68. [68]

      Wang, S.; Tan, Z.; Li, Y.; Sun, L.; Zhang, T., Synthesis, characterization and thermal analysis of polyaniline/ZrO2 composites. Thermochim Acta 2006, 441(2), 191-194.  doi: 10.1016/j.tca.2005.05.020

  • 加载中
    1. [1]

      Haojie SongLaiyu LuoSiyu WangGuo ZhangBaojiang Jiang . Advances in poly(heptazine imide)/poly(triazine imide) photocatalyst. Chinese Chemical Letters, 2024, 35(10): 109347-. doi: 10.1016/j.cclet.2023.109347

    2. [2]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    3. [3]

      Hongdao LIShengjian ZHANGHongmei DONG . Magnetic relaxation and luminescent behavior in nitronyl nitroxide-based annuluses of rare-earth ions. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 972-978. doi: 10.11862/CJIC.20230411

    4. [4]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

    5. [5]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    6. [6]

      Shuangying LiQingxiang ZhouZhi LiMenghua LiuYanhui Li . Sensitive measurement of silver ions in environmental water samples integrating magnetic ion-imprinted solid phase extraction and carbon dot fluorescent sensor. Chinese Chemical Letters, 2024, 35(5): 108693-. doi: 10.1016/j.cclet.2023.108693

    7. [7]

      Xianzheng Zhang Yana Chen Zhiyong Ye Huilin Hu Ling Lei Feng You Junlong Yao Huan Yang Xueliang Jiang . Magnetic field-assisted microbial corrosion construction iron sulfides incorporated nickel-iron hydroxide towards efficient oxygen evolution. Chinese Journal of Structural Chemistry, 2024, 43(1): 100200-100200. doi: 10.1016/j.cjsc.2023.100200

    8. [8]

      Yan ChengHua-Peng RuanYan PengLonghe LiZhenqiang XieLang LiuShiyong ZhangHengyun YeZhao-Bo Hu . Magnetic, dielectric and luminescence synergetic switchable effects in molecular material [Et3NCH2Cl]2[MnBr4]. Chinese Chemical Letters, 2024, 35(4): 108554-. doi: 10.1016/j.cclet.2023.108554

    9. [9]

      Zhi LiWenpei LiShaoping JiangChuan HuYuanyu HuangMaxim ShevtsovHuile GaoShaobo Ruan . Legumain-triggered aggregable gold nanoparticles for enhanced intratumoral retention. Chinese Chemical Letters, 2024, 35(7): 109150-. doi: 10.1016/j.cclet.2023.109150

    10. [10]

      Feng CuiFangman ChenXiaochun XieChenyang GuoKai XiaoZiping WuYinglu ChenJunna LuFeixia RuanChuanxu ChengChao YangDan Shao . Scalable production of mesoporous titanium nanoparticles through sequential flash nanocomplexation. Chinese Chemical Letters, 2024, 35(4): 108681-. doi: 10.1016/j.cclet.2023.108681

    11. [11]

      Bohan ChenLiming GongJing FengMingji JinLiqing ChenZhonggao GaoWei Huang . Research advances of nanoparticles for CAR-T therapy in solid tumors. Chinese Chemical Letters, 2024, 35(9): 109432-. doi: 10.1016/j.cclet.2023.109432

    12. [12]

      Xiao ZhuYanbing MoJiawei ChenGaopan LiuYonggang WangXiaoli Dong . A weakly-solvated ether-based electrolyte for fast-charging graphite anode. Chinese Chemical Letters, 2024, 35(8): 109146-. doi: 10.1016/j.cclet.2023.109146

    13. [13]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    14. [14]

      Xinyi Hu Riguang Zhang Zhao Jiang . Depositing the PtNi nanoparticles on niobium oxide to enhance the activity and CO-tolerance for alkaline methanol electrooxidation. Chinese Journal of Structural Chemistry, 2023, 42(11): 100157-100157. doi: 10.1016/j.cjsc.2023.100157

    15. [15]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    16. [16]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    17. [17]

      Yiran TaoChunlei DaiZhaoxiang XieXinru YouKaiwen LiJun WuHai Huang . Redox responsive polymeric nanoparticles enhance the efficacy of cyclin dependent kinase 7 inhibitor for enhanced treatment of prostate cancer. Chinese Chemical Letters, 2024, 35(8): 109170-. doi: 10.1016/j.cclet.2023.109170

    18. [18]

      Xiangqian CaoChenkai YangXiaodong ZhuMengxin ZhaoYilin YanZhengnan HuangJinming CaiJingming ZhuangShengzhou LiWei LiBing Shen . Synergistic enhancement of chemotherapy for bladder cancer by photothermal dual-sensitive nanosystem with gold nanoparticles and PNIPAM. Chinese Chemical Letters, 2024, 35(8): 109199-. doi: 10.1016/j.cclet.2023.109199

    19. [19]

      Yifei ZhangYuncong XueLaiwei GaoRui LiaoFeng WangFei Wang . Merging non-covalent and covalent crosslinking: En route to single chain nanoparticles. Chinese Chemical Letters, 2024, 35(6): 109217-. doi: 10.1016/j.cclet.2023.109217

    20. [20]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

Metrics
  • PDF Downloads(0)
  • Abstract views(622)
  • HTML views(13)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return