Citation: Jing-Gang Wang, Xiao-Qing Liu, Jin Zhu. From Furan to High Quality Bio-based Poly(ethylene furandicarboxylate)[J]. Chinese Journal of Polymer Science, ;2018, 36(6): 720-727. doi: 10.1007/s10118-018-2092-0 shu

From Furan to High Quality Bio-based Poly(ethylene furandicarboxylate)

  • Corresponding author: Xiao-Qing Liu, liuxq@nimte.ac.cn Jin Zhu, jzhu@nimte.ac.cn
  • Received Date: 24 October 2017
    Accepted Date: 14 November 2017
    Available Online: 19 January 2018

  • 2, 5-Furandicarboxylic acid (2, 5-FDCA) has been regarded as the ideal bio-based alternative to terephthalic acid (TPA). In recent years, great efforts have been made to synthesize 2, 5-FDCA through the following methods:(1) oxidation of 5-hydroxymethylfurfural (HMF) in the presence of complex biocatalyst or metallic catalyst; (2) conversion of 2-furoic acid via the well-known Henkel Reaction. Herein, a new strategy for the synthesis of 2, 5-FDCA from furan and acetic anhydride under mild condition is reported. The purity of the resulted 2, 5-FDCA was above 99.9%. Acetic acid and iodoform generated in the reaction were recyclable and no other harmful by-products were detected. The thus-obtained 2, 5-FDCA was applied for the preparation of poly(ethylene furandicarboxylate) (PEF) of high quality in terms of high molecular weight and good appearance.
  • 加载中
    1. [1]

      Gallezot P.. Conversion of biomass to selected chemical products[J]. Chem. Soc. Rev., 2012,41:1538-1558. doi: 10.1039/C1CS15147A

    2. [2]

      Iwata T.. Biodegradable and bio-based polymers:future prospects of eco-friendly plastics[J]. Angew. Chem. Int. Ed., 2015,54:3210-3215. doi: 10.1002/anie.201410770

    3. [3]

      Yu R. L, Zhang L. S., Feng Y. H., Zhang R. Y., Zhu J.. Improvement in toughness of polylactide by melt blending with bio-based poly(ester)urethane[J]. Chinese J. Polym. Sci., 2014,32(8):1099-1110. doi: 10.1007/s10118-014-1487-9

    4. [4]

      Tao Y.. New polymerization methodology of amino Acid based on lactam polymerization[J]. Acta Polymerica Sinica (in Chinese), 2016(9):1151-1159.  

    5. [5]

      Abid M., Kamoun W., Gharbi R. E., Fradet A.. Copolyesters containing terephthalic and bio-based furanic units by melt-polycondensation[J]. Macromol. Mater. Eng., 2008,293:39-44. doi: 10.1002/(ISSN)1439-2054

    6. [6]

      Burgess S. K., Kriegel R. M., Koros W. J.. Carbon dioxide sorption and transport in amorphous poly(ethylene furanoate)[J]. Macromolecules, 2015,48:2184-2193. doi: 10.1021/acs.macromol.5b00333

    7. [7]

      Zhu J., Cai J., Xie W., Chen P. H., Gazzano M., Scandola M., Gross R. A.. Poly(butylene 2, 5-furan dicarboxylate), a biobased alternative to PBT:synthesis, physical properties, and crystal structure[J]. Macromolecules, 2013,46:796-804. doi: 10.1021/ma3023298

    8. [8]

      Ma J. P., Yu X. F., Xu J., Pang Y.. Synthesis and crystallinity of poly(butylene 2, 5-furandicarboxylate)[J]. Polymer, 2012,53:4145-4151. doi: 10.1016/j.polymer.2012.07.022

    9. [9]

      Eerhart A. J. J. E., Faaij A. P. C., Patel M. K.. Replacing fossil based PET with biobased PEF; process analysis, energy and GHG balance[J]. Energy Environ. Sci., 2012,5:6407-6422. doi: 10.1039/c2ee02480b

    10. [10]

      Albonetti S., Lolli A., Morandi V., Migliori A., Lucarelli C., Cavani F.. Conversion of 5-hydroxymethylfurfural to 2, 5-furandicarboxylicacid over Au-based catalysts:optimization of active phaseand metal-support interaction[J]. Appl. Cat. B:Environ., 2015,163:520-530. doi: 10.1016/j.apcatb.2014.08.026

    11. [11]

      Thiyagarajan S., Pukin A., Haveren J. V., Lutz M., Es D. S. V.. Conversion of 5-hydroxymethylfurfural to 2, 5-furandicarboxylicacid over Au-based catalysts:optimization of active phaseand metal-support interaction[J]. RSC Adv., 2013,3:15678-15686. doi: 10.1039/C3RA42457J

    12. [12]

      Verdeguer P., Merat N., Gaset. A.. Oxydation catalytique du HMF en acide 2, 5-furane dicarboxylique[J]. Catal. A Chem., 1993,85:327-344.  

    13. [13]

      Gaset, A., Rigal, L., Paillassa, G., Salome, J. P. ; Fleche, G., 1986, U. S. Pat. 4, 590, 283.

    14. [14]

      Rosatella A. A., Simeonov S. P., Frade R. F. M., Afonso C. A. M.. ChemInform abstract:5-hydroxymethylfurfural (HMF) as a building block platform:biological properties, synthesis and synthetic applications[J]. Green Chem., 2011,13:754-793. doi: 10.1039/c0gc00401d

    15. [15]

      Howard, S. J., Sanborn, A. J., 2008, U. S. Pat. 20090156841.

    16. [16]

      Partenheimer W., Grushin V. V.. Synthesis of 2, 5-diformylfuran and furan-2, 5-dicarboxylic acid by catalytic air-oxidation of 5-hydroxymethylfurfural[J]. Adv. Synth. Catal., 2001,343:102-111. doi: 10.1002/(ISSN)1615-4169

    17. [17]

      Han X. W., Geng L., Guo Y., Jia R., Liu X. H., Zhang Y. G., Wang Y. Q.. Base-free aerobic oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over a Pt/C-O-Mg catalyst[J]. Green Chem., 2016,18:1597-1604. doi: 10.1039/C5GC02114F

    18. [18]

      Hang X. W., Li C. Q., Guo Y., Liu X. H., Zhang Y. G., Wang Y. G.. N-doped carbon supported Pt catalyst for base-free oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid[J]. Appl. Catal. A:Gene, 2016,526:1-8. doi: 10.1016/j.apcata.2016.07.011

    19. [19]

      Wang F., Yuan Z. L., Liu B., Chen S. H., Zhang Z. H.. Catalytic oxidation of biomass derived 5-hydroxymethylfurfural (HMF) over RuⅢ-incorporated zirconium phosphate catalyst[J]. J. Ind. Eng. Chem., 2016,38:181-185. doi: 10.1016/j.jiec.2016.05.001

    20. [20]

      Gupta N. K., Nishimura S., Takagaki A., Ebitani K.. Hydrotalcite-supported gold-nanoparticle-catalyzed highly efficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2, 5-furandicarboxylic acid under atmospheric oxygen pressure[J]. Green Chem., 2011,13:824-827. doi: 10.1039/c0gc00911c

    21. [21]

      Yi G., Teng S. P., Zhang Y.. Base-free conversion of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid over a Ru/C catalyst[J]. Green Chem., 2016,18:979-983. doi: 10.1039/C5GC01584G

    22. [22]

      Alboenyyil S., Lollia A., Morandi V.. Conversion of 5-hydroxymethylfurfural to 2, 5-furandicarboxylicacid over Au-based catalysts:Optimization of active phaseand metal-support interaction[J]. Appl. Cat. B:Environt., 2015,163:520-530. doi: 10.1016/j.apcatb.2014.08.026

    23. [23]

      Villa A., Schiavoni M., Campisi S., Veith G. M., Prati L.. Pd-modified Au on carbon as an effective and durable catalyst for the direct oxidation of HMF to 2, 5-furandicarboxylic acid[J]. ChemSusChem, 2013,6:609-612. doi: 10.1002/cssc.201200778

    24. [24]

      Dijkman W. P., Groothuis D. E., Fraaije M. W.. Enzyme-catalyzed oxidation of 5-hydroxymethylfurfural to furan-2, 5-dicarboxylic acid[J]. Angew. Chem. Int. Ed., 2014,53:6515-6518. doi: 10.1002/anie.201402904

    25. [25]

      McKenna S. M., Leimkühler S., Herter S., Turner N. J., Carnell A. J.. Enzyme cascade reactions:synthesis of furandicarboxylic acid (FDCA) and carboxylic acids using oxidases in tandem[J]. Green Chem., 2015,17:3271-3275. doi: 10.1039/C5GC00707K

    26. [26]

      Qin Y., Li Y., Zong M., Wu H., Li N.. Enzyme-catalyzed selective oxidation of 5-hydroxymethylfurfural (HMF) and separation of HMF and 2, 5-diformylfuran using deep eutectic solvents[J]. Green Chem., 2015,17:3718-3722. doi: 10.1039/C5GC00788G

    27. [27]

      Carro J., Ferreira P., Rodriguez L., Prieto A., Serrano A., Balcells B.. 5-Hydroxymethylfurfural conversion by fungal aryl-alcohol oxidase and unspecific peroxygenase[J]. FEBS J., 2014,282:3218-3229.  

    28. [28]

      Pan T., Deng J., Xu Q., Zuo Y., Guo Q. X., Fu Y.. Catalytic conversion of furfural into a 2, 5-furandicarboxylic acid-based polyester with total carbon utilization[J]. ChemSusChem, 2013,6:47-50. doi: 10.1002/cssc.201200652

    29. [29]

      Banerjee A., Dick G. R., Yoshino T., Kanan M. W.. Carbon dioxide utilization via carbonate-promoted C-H carboxylation[J]. Nature, 2016,531:215-219. doi: 10.1038/nature17185

    30. [30]

      Zhang W., Zhu Y. L., Niu S. S., Li Y. W.. A study of furfural decarbonylation on K-doped Pd/Al2O3 catalysts[J]. Catal. A:Chem., 2011,335:71-78. doi: 10.1016/j.molcata.2010.11.016

    31. [31]

      Reddy P. R., Subrahmanyam M. J., Kulkarni S.. Vapour phase acylation of furan and pyrrole over zeolites[J]. Catal. Lett., 1998,54:95-100. doi: 10.1023/A:1019015619247

    32. [32]

      Richard F., Carreyre H., Perot G. J.. Zeolite-catalyzed acylation of heterocyclic compounds:acylation of benzofuran and 2-methylbenzofuran in a fixed bed reactor[J]. Catalysts, 1996,159:427-434.  

    33. [33]

      Vaitheeswaran S., Green S. K., Dauenhauer P., Auerbach S. M.. On the Way to biofuels from furan:discriminating diels-alder and ring-opening mechanisms[J]. ACS Catal., 2013,3:2012-2019. doi: 10.1021/cs4003904

    34. [34]

      Trushkov I. V., Nevolina T. A., Shcherbinin V. A., Sorotskaya L. N., Butin A. V.. Furan ring opening-pyrrole ring closure[J]. A simple route to 1, 2, 3, 4-tetrahydropyrrolo [1, 2-a]pyrazin-3-ones.Tetrahedron Lett., 2013,54:3974-3976.  

    35. [35]

      Uchiyama M., Katoh N., Mimura R., Yokota N., Shimogaichi Y., Shimazaki M., Ohta A.. ChemInform abstract:highly enantioselective reduction of symmetrical diacetylaromatics with Baker's Yeast[J]. Tetrahedron:asymmetry, 1997,8:3467-3474. doi: 10.1016/S0957-4166(97)00462-X

    36. [36]

      Fuson R. C., Bull B. A.. The Haloform Reaction[J]. Chem. Rev., 1934,15:275-309. doi: 10.1021/cr60052a001

    37. [37]

      Tsanaktsis V., Papageorgiou G. Z., Bikiaris D. N.. A facile method to synthesize high-molecular-weight biobased polyesters from 2, 5-furandicarboxylic acid and long-chain diols[J]. J. Polym. Sci., Part A:Polym. Chem., 2015,53:2617-2632. doi: 10.1002/pola.v53.22

    38. [38]

      Moore J. A., Kelly J. E.. Polyesters derived from furan and tetrahydrofuran nuclei[J]. Macromolecules, 1978,11:568-573. doi: 10.1021/ma60063a028

    39. [39]

      Yi G., Teong S. P., Li X., Zhang Y.. Purification of eiomass-derived 5-hydroxymethylfurfural and its catalytic conversion to 2, 5-furandicarboxylic acid[J]. ChemSusChem, 2014,7:2131-2135. doi: 10.1002/cssc.201402105

    40. [40]

      Vigier K. D. O., Benguerba A., Barrault J., Jerome F.. Conversion of fructose and inulin to 5-hydroxymethylfurfural in sustainable betaine hydrochloride-based media[J]. Green Chem., 2012,14:285-289. doi: 10.1039/C1GC16236E

    41. [41]

      Gallo J. M. R., Alonso D. M., Mellmer M. A., Dumesic J. A.. Production and upgrading of 5-hydroxymethylfurfural using heterogeneous catalysts and biomass-derived solvents[J]. Green Chem., 2013,15:85-90. doi: 10.1039/C2GC36536G

    42. [42]

      Papageorgiou G. Z., Papageorgiou D. G., Terzopoulou Z., Bikiaris D. N.. Production of bio-based 2, 5-furan dicarboxylate polyesters:recent progress and critical aspects in their synthesis and thermal properties[J]. Eur. Polym. J., 2016,83:202-229. doi: 10.1016/j.eurpolymj.2016.08.004

    43. [43]

      Gomes M., Gandini A., Silvestre A. J. D., Reis B.. Synthesis and Characterization of poly(2, 5-furan dicarboxylate)s based on a variety of diols[J]. J. Polym. Sci., Part A:Polym. Chem., 2011,49:3759-3768. doi: 10.1002/pola.24812

    44. [44]

      Thiyagarajan S., Vogelzang W., Knoop R. J., Frissen A. E., Haveren J. V., Es D. S. V.. Biobased furandicarboxylic acids (FDCAs):effects of isomeric substitution on polyester synthesis and properties[J]. Green Chem., 2014,16:1957-1966. doi: 10.1039/C3GC42184H

    45. [45]

      Wang J. G., Liu X. Q., Zhang Y. J., Liu F., Zhu J.. Modification of poly(ethylene 2, 5-furandicarboxylate) with 1, 4-cyclohexanedimethylene:influence of composition on mechanical and barrier properties[J]. Polymer, 2016,103:1-8. doi: 10.1016/j.polymer.2016.09.030

    46. [46]

      Wang, J. G. ; Liu, X. Q. ; Zhu, J. ; Jiang, Y. H. Copolyesters based on 2, 5-furandicarboxylic acid (FDCA): effect of 2, 2, 4, 4-tetramethyl-1, 3-cyclobutanediol units on their properties Polymers 2017, 9, 305-320.

    47. [47]

      Knoop R., Vogelzang J. W., Haveren J. V., Es D. S. V.. High molecular weight poly(ethylene-2, 5-furanoate); critical aspects in synthesis and mechanical property determination[J]. J. Polym. Sci., Part A:Polym. Chem., 2013,51:4191-4199. doi: 10.1002/pola.26833

  • 加载中
    1. [1]

      Yu MaoYilin LiuXiaochen WangShengyang NiYi PanYi Wang . Acylfluorination of enynes via phosphine and silver catalysis. Chinese Chemical Letters, 2024, 35(8): 109443-. doi: 10.1016/j.cclet.2023.109443

    2. [2]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    3. [3]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    4. [4]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    5. [5]

      Haohao SunWenxuan WangYuli XiongZelang JianWen Chen . Boosting the electrochromic properties by large V2O5 nanobelts interlayer spacing tuned via PEDOT. Chinese Chemical Letters, 2024, 35(9): 109213-. doi: 10.1016/j.cclet.2023.109213

    6. [6]

      Lili WangYa YanRulin LiXujie HanJiahui LiTing RanJialu LiBaichuan XiongXiaorong SongZhaohui YinHong WangQingjun ZhuBowen ChengZhen Yin . Interface engineering of 2D NiFe LDH/NiFeS heterostructure for highly efficient 5-hydroxymethylfurfural electrooxidation. Chinese Chemical Letters, 2024, 35(9): 110011-. doi: 10.1016/j.cclet.2024.110011

    7. [7]

      Bingbing ShiYuchun WangYi ZhouXing-Xing ZhaoYizhou LiNuoqian YanWen-Juan QuQi LinTai-Bao Wei . A supramolecular oligo[2]rotaxane constructed by orthogonal platinum(Ⅱ) metallacycle and pillar[5]arene-based host–guest interactions. Chinese Chemical Letters, 2024, 35(10): 109540-. doi: 10.1016/j.cclet.2024.109540

    8. [8]

      Jia-Cheng HouHong-Tao JiYu-Han LuJia-Sheng WangYao-Dan XuYan-Yan ZengWei-Min He . Sustainable and practical semi-heterogeneous photosynthesis of 5-amino-1,2,4-thiadiazoles over WS2/TEMPO. Chinese Chemical Letters, 2024, 35(8): 109514-. doi: 10.1016/j.cclet.2024.109514

    9. [9]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    10. [10]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    11. [11]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    12. [12]

      Ping Lu Baoyin Du Ke Liu Ze Luo Abiduweili Sikandaier Lipeng Diao Jin Sun Luhua Jiang Yukun Zhu . Heterostructured In2O3/In2S3 hollow fibers enable efficient visible-light driven photocatalytic hydrogen production and 5-hydroxymethylfurfural oxidation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100361-100361. doi: 10.1016/j.cjsc.2024.100361

    13. [13]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    14. [14]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    15. [15]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    16. [16]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

    17. [17]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    19. [19]

      Zizhuo Liang Fuming Du Ning Zhao Xiangxin Guo . Revealing the reason for the unsuccessful fabrication of Li3Zr2Si2PO12 by solid state reaction. Chinese Journal of Structural Chemistry, 2023, 42(11): 100108-100108. doi: 10.1016/j.cjsc.2023.100108

    20. [20]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

Metrics
  • PDF Downloads(0)
  • Abstract views(591)
  • HTML views(3)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return